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Adam and learning rate

Adam: A Method for Stochastic Optimization
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Total citations

Diederik P. Kingma, Jimmy Ba
2014/12/22
Proceedings of the 3rd International Conference on Learning Representations (ICLR)

We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic
objective functions, based on adaptive estimates of lower-order moments. The method is
straightforward to implement, is computationally efficient, has little memory requirements,
is invariant to diagonal rescaling of the gradients, and is well suited for problems that are
large in terms of data and/or parameters. The method is also appropriate for non-
stationary objectives and problems with very noisy and/or sparse gradients. The hyper-
parameters have intuitive interpretations and typically require little tuning. Some
connections to related algorithms, on which Adam was inspired, are discussed. We also
analyze the theoretical convergence properties of the algorithm and provide a regret
bound on the convergence rate that is comparable to the best known results under the
online convex optimization framework. Empirical results demonstrate that Adam works
well in practice and compares favorably to other stochastic optimization methods. Finally,
we discuss AdaMax, a variant of Adam based on the infinity norm.
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Adam and learning rate

optimizer =

torch.optim.Adam(model.parameters(), |1r=0.001}

But it can depend on the batch size:

lr = lr_base x (batch_size / batch_size base) *xx 0.5

https://github.com/huggingface/pytorch-image-models
And on image resolution:

‘Sched.G_lrate_dict = {128: 0.0015, 256: 0.002, 512: 0.003, 1024: 0.003}

G lLr=5e-5

https://github.com/NVlabs/stylegan/blob/master/train.py
And on the network:

D lr=2e-4

https://github.com/ajbrock/BigGAN-PyTorch



Adam and learning rate

The goal:
an automatic scheduler




A recap of Adam

Problem: m1n f ( )

€T & k
Parameters




A recap of Adam

gr € 0f(xx)

Compute the gradient
We omit stochasticity for simplicity



A recap of Adam

gr € 0f (k)
Mi+1 = Bimg + (1 — B1)gk

Momentum estimate of gradients



A recap of Adam

6: Vi+1 = Bovg + (1 — 52)913

Coordinate-wise estimates of gradient magnitudes



A recap of Adam

4: gr € Of (xk)
50 mpy1 = Bimr + (1 — B1)gk
6: Vi+1 = Bovg + (1 — 52)9]%
7: Tk+1 = Tk — Vk s

: + \/Uk—l—l + €

Estimate gradient and divide by its magnitude



A recap of Adam

1: Input: xq, 51 € [0, 1) (default 0.9), 55 € [0, 1) (default 0.999),
2: v (default 0.001), € (default 10~3)

Many hyper parameters
but they work most of the time
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The setting

Problem: m1n f ( )

T C k
T Parameters

Convex

geif(r) = (g, —xs) = f(x) — fx



The setting

Problem: m1n f ( )

T C k
T Parameters

Non-smooth
g€ of(x) = (9,2 — ) > f(z) — [
g€edf(zx)=llgll <G
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Why bother with convexity?

1. We’re not tackling nonconvexity here

2. Makes derivation much easier

3. We have to run a lot of experiments anyway
4. We do care a lot about non smoothness
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1. The motivation
2. The prehistory
3. DoG and DoWG
4. D-Adaptation
5. Prodigy

6. Conclusion
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Subgradient Descent

gr € Of (k)
Lk+1 = Tk — YkJGk
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Subgradient Descent

Algorithm 2 Subgradient Descent

1: Input: zg, v
2: for £k =0tondo

3 Jir © 8f(.’,13k)
4. Tk+1 = Tk — YEIk
5: end for

D

Optimal stepsize: v, =

VEG

D = |lzo — x|



Polyak stepsize

LT+l = Tk — VkJk



Polyak stepsize
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The method has amazing guarantees



Polyak stepsize

L+l — Tk — VkJk,

The method has amazing guarantees

But how do we know f(x..)?



Polyak stepsize

B. Polyak

.@,:

@ Minimization of Unsmooth Functionals
- Zhurnal Viychislitel'noi Matematiki i Matematicheskoi Fiziki, 1987
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Polyak stepsize

B. Polyak
Minimization of Unsmooth Functionals
Zhurnal Viychislitel'noi Matematiki i Matematicheskoi Fiziki, 1987

N. Loizou, S. Vaswani, |. Laradji, S. Lacoste-dulien
Stochastic Polyak Step-size for SGD: An Adaptive
Learning Rate for Fast Convergence

AISTATS, 2021
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Normalized Gradient by Shor

Problem: miI}l f(:l?) Oracle: Jr © Bf(xk)
rER

gk
k||

Lk4+1 — Lk _Oék‘



Why normalization
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Why normalization
f(z) = |z| + 0.5001(x — 1)

subgradients:

|/ —2 € 6’f(0)

_9.10 4
sign(x) 4+ 0.5001(x — 1) 2-10 = 0f(0)



Why normalization

If g€ 0f(x), ||g|| is meaningless
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Normalized Gradient by Shor

Problem: miI}l f(:l?) Oracle: Jr © 0f(£€k)
rER

gk
x|

Thetl = T~ Ak

Theorem. For nonsmooth f with ||gx|| < G, ar =

in(f(2y) — ] = © (%) |

SIS

No need to know (!
But it needs to decrease o, and requires D
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— N. Shor
:@ Minimization Methods for Non-Differentiable Functions
page 23, 1985



Normalized Gradient by Shor

=== N. Shor
'5_‘@ Minimization Methods for Non-Differentiable Functions
- page 23, 1985

B. Grimmer
— Convergence Rates for Deterministic and Stochastic
5—@1 Subgradient Methods Without Lipschitz Continuity
- SIAM Journal on Optimization, 2019
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Adagrad-Norm

: _ D gk
NGD: Zhr = Tk = 5 T

gk

Adagrad: x — 1. — D
> o . \/Zf:o HgtHZ

Matthew Streeter, H. Brendan McMahan
Less Regret via Online Conditioning
COLT 2010




Adagrad-Norm

. - D g
NGD: zp1 =2k — 270,

gk

Adagrad: xpi1 = T —

D
Vo llgell?

6: Uk+i = By, + (1‘— 52)9'1%
Mk+1
7: T+l = Tk — Vi

\/Vk+1 + €




Adagrad-Norm

. - D g
NGD: zp1 =2k — 270,

Adagrad: xp11 = xp — 2L

D
V ok llgelI2

A bit more adaptive but it still requires D
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Distance-over-Gradients (DoG)

Problem: min f(x)

Setting: gr € 0f(xk), |gk]| < G
D = ||zg — .|

Subgradient stepsize: v, = GZ\D/E’ D = ||xg — =]

Estimate using Adagrad:/
GVEk = /Yo llgrll? We need to estimate D
to remove the stepsize

do = 11 = dj, = ||$0 —ka ~ Hmo —x*H
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DoG

dir = max ||[xg — x¢|| = D
t<k

d
; gk
VI llgell2

Distance over Gradients

Lk+1 — Lk



DoG

dir = max ||xg — x¢|| = D
t<k

dy
- gk
VI llgell2

Theorem. If ||gix|| < G, then

| DGlog dQO
min|f(zg) - fu] = O Vi

Lk+1 — Lk
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DoG and DoWG

A. Khaled, K. Mishchenko, C. Jin

DoWG Unleashed: An Efficient Universal Parameter-
Free Gradient Descent Method

NeurlPS 2023



DoWG

dp. =
max 2o — |

dp,
k
NNk

D :
oG: Lkt+1 — Lk




DoWG

dir = max ||xg — x¢||

t<k
DoG: Lkt+1 — Lk A Jr
Vor o llgel?
d;

L

DoWG: Ll+1 k

g
\/Zf:o d% Hgt H2

Distance over Weighted Gradients



DoWG

dir = max ||xg — x¢||

t<k
DoG: Lkt+1 — Lk di; Jr
Vor o llgel?
d;

L

DoWG: Ll+1 k

g
\/Zf:o d%HQtHQ

Distance over Weighted Gradients



DoWG

dir = max ||xg — x¢||

t<k
d
DoG: L+l — Tk ) Jr
Vo llgell?
d;,
DoWG: Lkt+1 — Lk

9k
\/Zf:o d%HQtHQ
Theorem. For nonsmooth f with ||gi|| < G

G D\ /log 2
miﬂ[f(wk)f*]g( \/ gdo)-

E<n \/ﬁ



Empirical behaviour

90
>
§ 85
-
O
@)
T 80
(/)]
@
—  Adam
75
—®— DoG-ave
—&— DOWG
70

0 25 o0 75 100 125 150
Epoch

Test accuracy, VGG11 on CIFAR10. Unstable behaviour.
Coordinate-wise estimation doesn’t work.
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D-Adaptation

k
7 - Zt:O di(gt, To — T¢)

k4+1 = .
Zt:() dt gy

How much the gradient is correlated
with our updates so far



D-Adaptation

k
oSk iz — 2
k+1 — L
Zt:o dt gy

Normalize correlations by gradient magnitudes



D-Adaptation

k
7 Zt:() dy <gt7 o — «Tt>

di+1 = .
Zt:() dt gy

i1 = max(di 1, dy)




D-Adaptation
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Theorem 1. D > d,.; (This estimate makes sense)



D-Adaptation

k
o Sk dignwo o)
k+1 — L
Zt:o dtgt

i1 = max(di 1, dy)

Theorem 1. D > cZnH

Theorem 2. Asymptotically,

(You pay nothing)
fin) = () = O (2€)




D-Adaptation

o Sk dignwo o)
k+1 — L
Zt:o dtgt

i1 = max(di 1, dy)

Theorem 1. D > cZnH
Theorem 2. Asymptotically,
fin) = () = O (2€)

Theorem 3. Non-asymptotically,

S 8D G log(D/do) Same as DoG




Coordinate-wise version

Sk+1 = Sk + drgk

Weighted gradient sum for Dual Averaging



Coordinate-wise version

Sk4+1 = Sk T dkgk Coordinate-wise
estimate of Adagrad

2
Ak+1 — A T gr



Coordinate-wise version

Sk+1 = Sk T+ dkgk Coordinate-wise

5 estimate of Adagrad
Arp+1 — Ak T Gg

Vpt1 = Bovk + (1‘;52)9';%

YT AL
Tk+1 — Tk — Vk
\/Vk+1 + €




Coordinate-wise version

Sk+1 = Sk + drgk

2
Ak+1 — Qg T gp

7 - Zf:o di(ge, To — Tt)
k+1 = .
Zt:o dt gy

The main difference with non-coordinate version



Coordinate-wise version

Sk+1 = Sk + drgk

2
Ak+1 — Qg T gp

k
y B tho dy <9t, Lo — CIZ’t>
k+1 — 1
Zt:() dt gy ,
Sk4+1
LEk+1 = L0




Coordinate-wise version

Sk+1 = Sk + drgk

2
Ak+1 — Qg T gp

k
7 - Zt:() di(ge, To — Tt)
k141 — .
Zt:o dt gy ,
Sk+1
Ykl = 20 \/ak+1

Theorem. Asymptotically, f(z,) — fx = O (pngw )



Experiments

IWSLT14 (LSTM)

8 — Adam (4.31 SE 0.003)
—— D-Adapt Adam (4.33 SE 0.003)

AT =
O
—
76 -
-

5 —

| I I | I I |
0 10000 20000 30000 40000 50000 60000

Adam: Ir=0.01 Step



lest Perplexity

Experiments

BookWiki (RoBERTa)

12.5 — Adam (3.97 SE 0.010)
|V —— D-Adapt Adam (3.96 SE 0.008)
10.0 — "
7.5 —
5.0 —

| | I I
5000 10000 15000 20000

Adam: Ir=0.001 Step



Experiments

fastMRI Knee (VarNet 2.0)

0.90 —
=
»nn 0.88 —
N
o 0.86
Adam (0.9103 SE 0.00032)
0.84 — —— D-Adapt Adam (0.9105 SE 0.00057)

| | | | I |
0 10 20 30 40 50

Adam: Ir=0.0003 Epoch



Experiments

ILSVRC 2012 ImageNet (Vision Transformer)

20 — —— D-Adapt Adam (72.05%)
Adam (74.01%)

Test Accuracy (%)
I
=
I

0 | | | | | | |
0 50 100 150 200 250 300

Adam: Ir=0.001 Epoch
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Prodigy




Prodigy
Lk+1 — Tk — NGk
dy,
Nk =
oS [PATE

This is the same idea as DoWG

dp




Prodigy
Lk+1 = Tk — NeJk
dy
Nk =
O AIPALE

But let’s go one step further

dy,




Prodigy
Lk+1 — LTk — NEJGk
7 i
L =
O AIPALE

But let’s go one step further

dy,

Nk = .
o HPAE
A\? = 35" = same weights as in Adam




Prodigy

Theorem. If ||g;|| < G, then

| DG\/log d—lz
min|f(zy) - fi] = O ( Vi )

Prodigy to D-Adaptation is same
as DoWG to DoG



Prodigy

Algorithm 4 Prodigy (Adam version)

Tk+1 = \/Erk (1 — \/Exgk,fﬂo — SBk)
Sk+1 = VB2sk + (1 — v/ B2)dr gk

T'k+1
|5k+1H1

dit1 = ‘



Prodigy

Algorithm 4 Prodigy (Adam version)

v

k41 = \/@m (1 — \/Exgk,ﬂ?o — in)
Sk+1 = \/Ee‘?k T (1 — \/E)dkgk

Tk+1
|5k+1H1

dit1 = ‘



Numerical results

ILSVRC 2012 ImageNet (Vision Transformer)

~J
-
I

, —— D-Adapt Adam (72.35% SE 0.07)

Test Accuracy (%)
o))
S
I

50 ' Adam (75.40% SE 0.07)
/ Prodigy (74.63% SE 0.21)
40 | | | | | | |
0 50 100 150 200 250 300
Epoch

The gap when training ViT on Imagenet
iIs almost closed



Numerical results

90
3 80 —— Adam
g DoG
S —A&— L-DoG
*; 70 —>— D-Adapt Adam
2 —4— Prodigy

) /

50

0 125
Epoch

ResNet-50 on CIFAR10 is still a bit suboptimal
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Conclusion

1. There is still a small performance gap
2. Stochastic analysis Is very hard
3. No coordinate-wise theory beyond DA

4. d,: can we decrease it?

5. d,: can we use it coordinate-wise?
6. Why is Adam helpful?



