Parameter-Free Adaptive
Optimization

SAMSUNG
OMeta pasearch

-8 PRINCETON
UNIVERSITY

Konstantin Mishchenko

Based on joint work with
Aaron Defazio, Ahmed Khaled, Chi Jin

Numerical results

https://github.com/facebookresearch/dadaptation

%9 Fork 16 ¢ Star 455 @ - Used by 148

657\".16 AIN @ +140

downloads 1M j downloads/month 103k

Numerical results

https://github.com/facebookresearch/dadaptation

%9 Fork 16 ¢ Star 455 @~ Used by 148

57\".1.6 AIN @ +140

downloads 1M j downloads/month 103k

https://github.com/konstmish/prodigy

%9 Fork 10 ¢ Star 194 -

downloads 357k | downloads/month 63k

<] 96 Repositories &) 2 Packages

Talk plan

1. The motivation
2. The prehistory
3. DoG and DoWG
4. D-Adaptation
5. Prodigy

6. Conclusion

Adam and learning rate

Adam: A Method for Stochastic Optimization

Authors
Publication date
Journal

Description

Total citations

Diederik P. Kingma, Jimmy Ba
2014/12/22
Proceedings of the 3rd International Conference on Learning Representations (ICLR)

We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic
objective functions, based on adaptive estimates of lower-order moments. The method is
straightforward to implement, is computationally efficient, has little memory requirements,
is invariant to diagonal rescaling of the gradients, and is well suited for problems that are
large in terms of data and/or parameters. The method is also appropriate for non-
stationary objectives and problems with very noisy and/or sparse gradients. The hyper-
parameters have intuitive interpretations and typically require little tuning. Some
connections to related algorithms, on which Adam was inspired, are discussed. We also
analyze the theoretical convergence properties of the algorithm and provide a regret
bound on the convergence rate that is comparable to the best known results under the
online convex optimization framework. Empirical results demonstrate that Adam works
well in practice and compares favorably to other stochastic optimization methods. Finally,
we discuss AdaMax, a variant of Adam based on the infinity norm.

Cited by 150277

__-llllll

2016 2017 2018 2019 2020 2021 2022 2023

Adam and learning rate

optimizer = torch.optim.Adam(model.parameters(), 1r=®.00ﬂ)

Adam and learning rate

optimizer = torch.optim.Adam(model.parameters(), 1r=®.0®ﬂ'

Adam and learning rate

optimizer = torch.optim.Adam(model.parameters(), 1r=0.0®ﬂ'

But it can depend on the batch size:

lr = lr_base x (batch_size / batch_size base) *xx 0.5

https://github.com/huggingface/pytorch-image-models

Adam and learning rate

optimizer = torch.optim.Adam(model.parameters(), 1r=®.0®ﬂ»

But it can depend on the batch size:

lr = lr_base x (batch_size / batch_size base) *xx 0.5

https://github.com/huggingface/pytorch-image-models
And on image resolution:

‘Sched.G_lrate_dict = {128: 0.0015, 256: 0.002, 512: 0.003, 1024: 0.003}

https://github.com/NVlabs/stylegan/blob/master/train.py

Adam and learning rate

optimizer =

torch.optim.Adam(model.parameters(), |1r=0.001}

But it can depend on the batch size:

lr = lr_base x (batch_size / batch_size base) *xx 0.5

https://github.com/huggingface/pytorch-image-models
And on image resolution:

‘Sched.G_lrate_dict = {128: 0.0015, 256: 0.002, 512: 0.003, 1024: 0.003}

G lLr=5e-5

https://github.com/NVlabs/stylegan/blob/master/train.py
And on the network:

D lr=2e-4

https://github.com/ajbrock/BigGAN-PyTorch

Adam and learning rate

The goal:
an automatic scheduler

A recap of Adam

Problem: m1n f ()

€T & k
Parameters

A recap of Adam

gr € 0f(xx)

Compute the gradient
We omit stochasticity for simplicity

A recap of Adam

gr € 0f (k)
Mi+1 = Bimg + (1 — B1)gk

Momentum estimate of gradients

A recap of Adam

6: Vi+1 = Bovg + (1 — 52)913

Coordinate-wise estimates of gradient magnitudes

A recap of Adam

4: gr € Of (xk)
50 mpy1 = Bimr + (1 — B1)gk
6: Vi+1 = Bovg + (1 — 52)9]%
7: Tk+1 = Tk — Vk s

: + \/Uk—l—l + €

Estimate gradient and divide by its magnitude

A recap of Adam

1: Input: xq, 51 € [0, 1) (default 0.9), 55 € [0, 1) (default 0.999),
2: v (default 0.001), € (default 10~3)

Many hyper parameters
but they work most of the time

Papers the talk is based on

A. Defazio, K. Mishchenko
—@ Learning-Rate-Free Learning by D-Adaptation
ICML 2023 (released December 2022)

%’:

%’:

%’:

Papers the talk is based on

A. Defazio, K. Mishchenko
_@—r Learning-Rate-Free Learning by D-Adaptation
- ICML 2023 (released December 2022)

M. lvgi, O. Hinder, Y. Carmon

DoG is SGD's Best Friend: A Parameter-Free
Dynamic Step Size Schedule

ICML 2023 (released February 2023)

6l

%’:

Papers the talk is based on

A. Defazio, K. Mishchenko
_@—r Learning-Rate-Free Learning by D-Adaptation
- ICML 2023 (released December 2022)

M. lvgi, O. Hinder, Y. Carmon

DoG is SGD's Best Friend: A Parameter-Free
Dynamic Step Size Schedule

ICML 2023 (released February 2023)

@’:

A. Khaled, K. Mishchenko, C. Jin
DoWG Unleashed: An Efficient Universal Parameter-

Free Gradient Descent Method
NeurlPS 2023

%’:

@’:

Papers the talk is based on

A. Defazio, K. Mishchenko

il

il

il

@ Learning-Rate-Free Learning by D-Adaptation
- ICML 2023 (released December 2022)

M. lvgi, O. Hinder, Y. Carmon

DoG is SGD's Best Friend: A Parameter-Free
Dynamic Step Size Schedule

ICML 2023 (released February 2023)

A. Khaled, K. Mishchenko, C. Jin
DoWG Unleashed: An Efficient Universal Parameter-

Free Gradient Descent Method
NeurlPS 2023

K. Mishchenko, A. Defazio
Prodigy: An Expeditiously Adaptive Parameter-Free Learner
arXiv:2306.06101 June 2023

The setting

Problem: m1n f ()

€T & k
Parameters

The setting

Problem: m1n f ()

T C k
T Parameters

Convex
Non-smooth

The setting

Problem: m1n f ()

T C k
T Parameters

Non-smooth
g € 0f(x)

The setting

Problem: m1n f ()

T C k
T Parameters

Convex

geif(r) = (g, —xs) = f(x) — fx

The setting

Problem: m1n f ()

T C k
T Parameters

Non-smooth
g€ of(x) = (9,2 —) > f(z) — [
g€edf(zx)=llgll <G

Why bother with convexity?

1. We’re not tackling nonconvexity here

Why bother with convexity?

1. We’re not tackling nonconvexity here
2. Makes derivation much easier

Why bother with convexity?

1. We’re not tackling nonconvexity here
2. Makes derivation much easier
3. We have to run a lot of experiments anyway

Why bother with convexity?

1. We’re not tackling nonconvexity here

2. Makes derivation much easier

3. We have to run a lot of experiments anyway
4. We do care a lot about non smoothness

Talk plan

1. The motivation
2. The prehistory
3. DoG and DoWG
4. D-Adaptation
5. Prodigy

6. Conclusion

Subgradient Descent

gr € Of (xx)

Subgradient Descent

gr € Of (k)
Lk+1 = Tk — YkJGk

Subgradient Descent

Subgradient Descent

Algorithm 2 Subgradient Descent

1: Input: zg, v
2: for £k =0tondo

3 Jir © 8f(.’,13k)
4. Tk+1 = Tk — YEIk
5: end for

D

Optimal stepsize: v, =

VEG

Subgradient Descent

Algorithm 2 Subgradient Descent

1: Input: zg, v
2: for £k =0tondo

3 Jir © 8f(.’,13k)
4. Tk+1 = Tk — YEIk
5: end for

D

Optimal stepsize: v, =

VEG

D = |lzo — x|

Polyak stepsize

LT+l = Tk — VkJk

Polyak stepsize

Lid+1 — Tk — VkJk,

The method has amazing guarantees

Polyak stepsize

L+l — Tk — VkJk,

The method has amazing guarantees

But how do we know f(x..)?

Polyak stepsize

B. Polyak

.@,:

@ Minimization of Unsmooth Functionals
- Zhurnal Viychislitel'noi Matematiki i Matematicheskoi Fiziki, 1987

%{

.@’:

Polyak stepsize

B. Polyak
Minimization of Unsmooth Functionals
Zhurnal Viychislitel'noi Matematiki i Matematicheskoi Fiziki, 1987

N. Loizou, S. Vaswani, |. Laradji, S. Lacoste-dulien
Stochastic Polyak Step-size for SGD: An Adaptive
Learning Rate for Fast Convergence

AISTATS, 2021

Normalized Gradient by Shor

Problem: miI}l f(:l?) Oracle: Jr © Bf(xk)
rER

Normalized Gradient by Shor

Problem: miI}l f(:l?) Oracle: Jr © Bf(xk)
rER

gk
k||

Lk4+1 — Lk _Oék‘

Why normalization

f(x) = |z| +0.5001(x — 1)7
s

x| +0.5001(z — 1) /

Why normalization
f(z) = |z| + 0.5001(x — 1)

subgradients:

|/ —2 € 6’f(0)

_9.10 4
sign(x) 4+ 0.5001(x — 1) 2-10 = 0f(0)

Why normalization

If g€ 0f(x), ||g|| is meaningless

Normalized Gradient by Shor

Problem: miI}l f(:l?) Oracle: Jr © Bf(xk)
rER

gk
k||

Lk4+1 — Lk _Oék‘

Normalized Gradient by Shor

Problem: mi% f(:l?) Oracle: Ji © Bf(xk)
reR

gk
g ||

Thetl = T~ Ak

Theorem. For nonsmooth f with ||gx|| < G, ar =

inlf(2y) —] = © (%) |

=

Normalized Gradient by Shor

Problem: miI}l f(:l?) Oracle: Jr © Of(xk)
rER

gk
g ||

Lk4+1 = Lk — Of

Theorem. For nonsmooth f with ||gx|| < G, ar =

in(f(2y) —] = © (%) |

SIS

No need to know G!

Normalized Gradient by Shor

Problem: miI}l f(:l?) Oracle: Jr © 0f(£€k)
rER

gk
x|

Thetl = T~ Ak

Theorem. For nonsmooth f with ||gx|| < G, ar =

in(f(2y) —] = © (%) |

SIS

No need to know (!
But it needs to decrease o, and requires D

Normalized Gradient by Shor

— N. Shor
:@ Minimization Methods for Non-Differentiable Functions
page 23, 1985

Normalized Gradient by Shor

=== N. Shor
'5_‘@ Minimization Methods for Non-Differentiable Functions
- page 23, 1985

B. Grimmer
— Convergence Rates for Deterministic and Stochastic
5—@1 Subgradient Methods Without Lipschitz Continuity
- SIAM Journal on Optimization, 2019

Adagrad-Norm

. - D gk
NGD: zp1 = 2k — Z270,7

Adagrad-Norm

: _ D gk
NGD: Zhr = Tk = 5 T

gk

Adagrad: x — 1. — D
> o . \/Zf:o HgtHZ

Matthew Streeter, H. Brendan McMahan
Less Regret via Online Conditioning
COLT 2010

Adagrad-Norm

. - D g
NGD: zp1 =2k — 270,

gk

Adagrad: xpi1 = T —

D
Vo llgell?

6: Uk+i = By, + (1‘— 52)9'1%
Mk+1
7: T+l = Tk — Vi

\/Vk+1 + €

Adagrad-Norm

. - D g
NGD: zp1 =2k — 270,

Adagrad: xp11 = xp — 2L

D
V ok llgelI2

A bit more adaptive but it still requires D

Talk plan

1. The motivation
2. The prehistory
3. DoG and DoWG
4. D-Adaptation
5. Prodigy

6. Conclusion

DoG and DoWG

M. lvgi, O. Hinder, Y. Carmon

DoG is SGD's Best Friend: A Parameter-Free
Dynamic Step Size Schedule

ICML 2023

%

'ﬂ

%

DoG and DoWG

M. lvgi, O. Hinder, Y. Carmon

DoG is SGD's Best Friend: A Parameter-Free
Dynamic Step Size Schedule

ICML 2023

A. Khaled, K. Mishchenko, C. Jin

DoWG Unleashed: An Efficient Universal Parameter-
Free Gradient Descent Method

NeurlPS 2023

Distance-over-Gradients (DoG)

Problem: min f(x)

Distance-over-Gradients (DoG)

Problem: mi
roblem: min f(x)

Setting: gr € 0f(xk), |gk]| < G
D = ||zg — .|

Distance-over-Gradients (DoG)

Problem: mi
roblem: min f(x)

Setting: gr € 0f(xk), |gk]| < G
D = ||zg — .|

Subgradient stepsize: v, = GZ\D/E’ D = ||xg — =]

Distance-over-Gradients (DoG)

Problem: min f(x)

Setting: gr € 0f(xk), |gk]| < G
D = ||zg — .|

Subgradient stepsize: v, = GZ\D/E’ D = ||xg — =]

Eistimate using Adagrad:/
GV~ /> o gk

Distance-over-Gradients (DoG)

Problem: min f(x)

Setting: gr € 0f(xk), |gk]| < G
D = ||zg — .|

Subgradient stepsize: v, = GZ\D/E’ D = ||xg — =]

Estimate using Adagrad:/
GVEk = /Yo llgrll? We need to estimate D
to remove the stepsize

Distance-over-Gradients (DoG)

Problem: min f(x)

Setting: gr € 0f(xk), |gk]| < G
D = ||zg — .|

Subgradient stepsize: v, = GZ\D/E’ D = ||xg — =]

Eistimate using Adagrad:/
GVE~ /3 ko 9kl W

e need to estimate D
to remove the stepsize

d0:>2131

Distance-over-Gradients (DoG)

Problem: min f(x)

Setting: gr € 0f(xk), |gk]| < G
D = ||zg — .|

Subgradient stepsize: v, = GZ\D/E’ D = ||xg — =]

Estimate using Adagrad:/
GVEk = /Yo llgrll? We need to estimate D
to remove the stepsize

do = 11 = dj, = ||$0 —ka ~ Hmo —x*H

DoG

dir = max |rg — xz|| = D
t<k

DoG

dir = max ||[xg — x¢|| = D
t<k

d
; gk
VI llgell2

Distance over Gradients

Lk+1 — Lk

DoG

dir = max ||xg — x¢|| = D
t<k

dy
- gk
VI llgell2

Theorem. If ||gix|| < G, then

| DGlog dQO
min|f(zg) - fu] = O Vi

Lk+1 — Lk

'ﬂ

DoG and DoWG

A. Khaled, K. Mishchenko, C. Jin

DoWG Unleashed: An Efficient Universal Parameter-
Free Gradient Descent Method

NeurlPS 2023

DoWG

dp. =
max 2o — |

dp,
k
NNk

D :
oG: Lkt+1 — Lk

DoWG

dir = max ||xg — x¢||

t<k
DoG: Lkt+1 — Lk A Jr
Vor o llgel?
d;

L

DoWG: Ll+1 k

g
\/Zf:o d% Hgt H2

Distance over Weighted Gradients

DoWG

dir = max ||xg — x¢||

t<k
DoG: Lkt+1 — Lk di; Jr
Vor o llgel?
d;

L

DoWG: Ll+1 k

g
\/Zf:o d%HQtHQ

Distance over Weighted Gradients

DoWG

dir = max ||xg — x¢||

t<k
d
DoG: L+l — Tk) Jr
Vo llgell?
d;,
DoWG: Lkt+1 — Lk

9k
\/Zf:o d%HQtHQ
Theorem. For nonsmooth f with ||gi|| < G

G D\ /log 2
miﬂ[f(wk)f*]g(\/ gdo)-

E<n \/ﬁ

Empirical behaviour

90
>
§ 85
-
O
@)
T 80
(/)]
@
— Adam
75
—®— DoG-ave
—&— DOWG
70

0 25 o0 75 100 125 150
Epoch

Test accuracy, VGG11 on CIFAR10. Unstable behaviour.
Coordinate-wise estimation doesn’t work.

Talk plan

1. The motivation
2. The prehistory
3. DoG and DoWG
4. D-Adaptation
5. Prodigy

6. Conclusion

D-Adaptation

k
7 - Zt:O di(gt, To — T¢)

k4+1 = .
Zt:() dt gy

How much the gradient is correlated
with our updates so far

D-Adaptation

k
oSk iz — 2
k+1 — L
Zt:o dt gy

Normalize correlations by gradient magnitudes

D-Adaptation

k
7 Zt:() dy <gt7 o — «Tt>

di+1 = .
Zt:() dt gy

i1 = max(di 1, dy)

D-Adaptation

o Sk dignwo o)
k+1 — L
Zt:o dtgt

i1 = max(di 1, dy)

Theorem 1. D > d,.; (This estimate makes sense)

D-Adaptation

k
o Sk dignwo o)
k+1 — L
Zt:o dtgt

i1 = max(di 1, dy)

Theorem 1. D > cZnH

Theorem 2. Asymptotically,

(You pay nothing)
fin) = () = O (2€)

D-Adaptation

o Sk dignwo o)
k+1 — L
Zt:o dtgt

i1 = max(di 1, dy)

Theorem 1. D > cZnH
Theorem 2. Asymptotically,
fin) = () = O (2€)

Theorem 3. Non-asymptotically,

S 8D G log(D/do) Same as DoG

Coordinate-wise version

Sk+1 = Sk + drgk

Weighted gradient sum for Dual Averaging

Coordinate-wise version

Sk4+1 = Sk T dkgk Coordinate-wise
estimate of Adagrad

2
Ak+1 — A T gr

Coordinate-wise version

Sk+1 = Sk T+ dkgk Coordinate-wise

5 estimate of Adagrad
Arp+1 — Ak T Gg

Vpt1 = Bovk + (1‘;52)9';%

YT AL
Tk+1 — Tk — Vk
\/Vk+1 + €

Coordinate-wise version

Sk+1 = Sk + drgk

2
Ak+1 — Qg T gp

7 - Zf:o di(ge, To — Tt)
k+1 = .
Zt:o dt gy

The main difference with non-coordinate version

Coordinate-wise version

Sk+1 = Sk + drgk

2
Ak+1 — Qg T gp

k
y B tho dy <9t, Lo — CIZ’t>
k+1 — 1
Zt:() dt gy ,
Sk4+1
LEk+1 = L0

Coordinate-wise version

Sk+1 = Sk + drgk

2
Ak+1 — Qg T gp

k
7 - Zt:() di(ge, To — Tt)
k141 — .
Zt:o dt gy ,
Sk+1
Ykl = 20 \/ak+1

Theorem. Asymptotically, f(z,) — fx = O (pngw)

Experiments

IWSLT14 (LSTM)

8 — Adam (4.31 SE 0.003)
—— D-Adapt Adam (4.33 SE 0.003)

AT =
O
—
76 -
-

5 —

| I I | I I |
0 10000 20000 30000 40000 50000 60000

Adam: Ir=0.01 Step

lest Perplexity

Experiments

BookWiki (RoBERTa)

12.5 — Adam (3.97 SE 0.010)
|V —— D-Adapt Adam (3.96 SE 0.008)
10.0 — "
7.5 —
5.0 —

| | I I
5000 10000 15000 20000

Adam: Ir=0.001 Step

Experiments

fastMRI Knee (VarNet 2.0)

0.90 —
=
»nn 0.88 —
N
o 0.86
Adam (0.9103 SE 0.00032)
0.84 — —— D-Adapt Adam (0.9105 SE 0.00057)

| | | | I |
0 10 20 30 40 50

Adam: Ir=0.0003 Epoch

Experiments

ILSVRC 2012 ImageNet (Vision Transformer)

20 — —— D-Adapt Adam (72.05%)
Adam (74.01%)

Test Accuracy (%)
I
=
I

0 | | | | | | |
0 50 100 150 200 250 300

Adam: Ir=0.001 Epoch

Talk plan

1. The motivation
2. The prehistory
3. DoG and DoWG
4. D-Adaptation
5. Prodigy

6. Conclusion

Papers the talk is based on

K. Mishchenko, A. Defazio
Prodigy: An Expeditiously Adaptive Parameter-Free Learner
arXiv:2306.06101 June 2023

Prodigy

Prodigy
Lk+1 — Tk — NGk
dy,
Nk =
oS [PATE

This is the same idea as DoWG

dp

Prodigy
Lk+1 = Tk — NeJk
dy
Nk =
O AIPALE

But let’s go one step further

dy,

Prodigy
Lk+1 — LTk — NEJGk
7 i
L =
O AIPALE

But let’s go one step further

dy,

Nk = .
o HPAE
A\? = 35" = same weights as in Adam

Prodigy

Theorem. If ||g;|| < G, then

| DG\/log d—lz
min|f(zy) - fi] = O (Vi)

Prodigy to D-Adaptation is same
as DoWG to DoG

Prodigy

Algorithm 4 Prodigy (Adam version)

Tk+1 = \/Erk (1 — \/Exgk,fﬂo — SBk)
Sk+1 = VB2sk + (1 — v/ B2)dr gk

T'k+1
|5k+1H1

dit1 = ‘

Prodigy

Algorithm 4 Prodigy (Adam version)

v

k41 = \/@m (1 — \/Exgk,ﬂ?o — in)
Sk+1 = \/Ee‘?k T (1 — \/E)dkgk

Tk+1
|5k+1H1

dit1 = ‘

Numerical results

ILSVRC 2012 ImageNet (Vision Transformer)

~J
-
I

, —— D-Adapt Adam (72.35% SE 0.07)

Test Accuracy (%)
o))
S
I

50 ' Adam (75.40% SE 0.07)
/ Prodigy (74.63% SE 0.21)
40 | | | | | | |
0 50 100 150 200 250 300
Epoch

The gap when training ViT on Imagenet
iIs almost closed

Numerical results

90
3 80 —— Adam
g DoG
S —A&— L-DoG
*; 70 —>— D-Adapt Adam
2 —4— Prodigy

) /

50

0 125
Epoch

ResNet-50 on CIFAR10 is still a bit suboptimal

Talk plan

1. The motivation
2. The prehistory
3. DoG and DoWG
4. D-Adaptation
5. Prodigy

6. Conclusion

Conclusion

1. There is still a small performance gap

Conclusion

1. There is still a small performance gap
2. Stochastic analysis Is very hard

Conclusion

1. There is still a small performance gap
2. Stochastic analysis Is very hard
3. No coordinate-wise theory beyond DA

Conclusion

1. There is still a small performance gap
2. Stochastic analysis Is very hard
3. No coordinate-wise theory beyond DA

4. d,: can we decrease it?

Conclusion

1. There is still a small performance gap
2. Stochastic analysis Is very hard
3. No coordinate-wise theory beyond DA

4. d,: can we decrease it?
5. d,: can we use it coordinate-wise?

Conclusion

1. There is still a small performance gap
2. Stochastic analysis Is very hard
3. No coordinate-wise theory beyond DA

4. d,: can we decrease it?

5. d,: can we use it coordinate-wise?
6. Why is Adam helpful?

