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Talk plan

1. Why Asynchronous SGD?
2. Overview of known results
3. Motivation and intuition

4. New results

5. Limitations
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Goal: Parallelize on M devices (same data!)
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Sm: Seconds per gradient by worker m
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Time budget

mmber of workers
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Asynchronous SGD

Motivation:

1. Heterogeneous cluster

2. Unstable network/devices
3. Random computation time
4. Real decentralization

The drawback: delays
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Is it not solved?

State of the literature:

1. Tight bounds for constant delays

2. General rates depend on the longest delay

3. Assumptions sometimes don’t match those
of Minibatch SGD

4. No provable speed-up vs. Minibatch SGD
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A Tight Convergence Analysis for Stochastic Gradient Descent
with Delayed Updates

Yossi Arjevani Ohad Shamir Nathan Srebro
Weizmann Institute of Science TTI Chicago
Rehovot 7610001, Israel Chicago, IL 60637
{yossi.arjevani,ohad.shamir}@weizmann.ac.il nati@ttic.edu
Abstract

We provide tight finite-time convergence bounds for gradient descent and stochastic gradient descent
on quadratic functions, when the gradients are delayed and reflect iterates from 7 rounds ago. First, we
show that without stochastic noise, delays strongly affect the attainable optimization error: In fact, the
error can be as bad as non-delayed gradient descent ran on only 1/7 of the gradients. In sharp contrast,
we quantify how stochastic noise makes the effect of delays negligible, improving on previous work
which only showed this phenomenon asymptotically or for much smaller delays. Also, in the context
of distributed optimization, the results indicate that the performance of gradient descent with delays
1s competitive with synchronous approaches such as mini-batching. Our results are based on a novel
technique for analyzing convergence of optimization algorithms using generating functions.
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Theorem. Let f be L-smooth and convex, then Asynchronous SGD
with constant delay 7 converges as
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Theorem. Let f be L-smooth and convex, then any
Asynchronous Gradient with constant delay 7 converges not better than
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Asynchronous SGD

man Sj

In general, the delay is 7~ > 0 _,

Sm

Sm: Deconds per gradient by worker m
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So who is faster?
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Theorem.
Smooth nonconvex problems:
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k<K
Smooth convex problems:
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Smooth strongly convex problems:
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Rate is O(M) Rate is O(M)

Asynchronous SGD is faster
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Contradiction! (and their derivation is correct!)
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Theorem. Let f be L-smooth and convex, then any
Asynchronous Gradient with constant delay 7 converges not better than
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K?
But in their counterexample, 7 = M
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Virtual iterates:

Tpt1 = Tk — VeV (Tk; Ek)

Amazingly powerful idea
(Mania et al., 2017)
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Main ideas

Virtual iterates:
Trht1 = Tk — eV S(Tr; k)
Lk = Lk—-1 — /ykvf(mk—T(k’)a gk’—'r(k’))

M
T — Tp = Z Vnext(k,m)vf(xprev(k,m); ‘fprev(k,m))

Gradients that are
being computed
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Difficutty: E[V f(z1;&)] = Vf(ar) # V()

Resolution: ﬂmi‘k _kaZ] < MQ(GQ _I_O_Q)

Upper bound on gradient |V f(2)| <G
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Virtual iterates:

Trht1 = Tk — eV [(Tr; k)
Difficutty: E[V f(z1;&)] = Vf(ar) # V()

If gradient
not bounded:

M
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-0 ()
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Limitations

1. Constant stepsize only if
bounded gradients

2. Delay-dependent stepsize only If
noise and delay are independent

3. Workers must have same data

4. Still centralized



