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Problem

We want to solve the finite-sum optimization problem

min
x∈Rd

f (x) def= 1
n

n∑
i=1

fi(x). (1)

• Problem (1) has many applications in machine learning,
data science and engineering.
•We focus on the regime when n is very large. This is
typically the case in big data settings (e.g., massively
distributed and federated learning).

Assumptions

• Each fi is µ-strongly convex (µ > 0), i.e.,
µId � ∇2fi(x), ∀x ∈ Rd,

• Each fi has H-Lipschitz Hessian, i.e.,
‖∇2fi(x)−∇2fi(y)‖ ≤ H‖x− y‖, ∀x, y ∈ Rd.

Our Contribution

We develop two new simple and fundamental stochastic
second-order methods:
• Stochastic Newton (SN) method,
• Stochastic Cubic Newton (SCN) method.
Our methods have highly desirable properties:
•Cost of 1 iteration does not depend on n,
• (Local) convergence rate does not depend on the conditioning of
the problem.

Motivation I: The Curse of
1st Order Methods

In this regime, the state of the art methods for solving (1) are
variants of stochastic gradient descent. However, the perfor-
mance of all first order methods depends heavily on the condi-
tioning of the problem. Various strategies have been proposed to
address this problem:
• preconditioning (e.g., data normalization, layer and batch
normalization),
•momentum (e.g., Polyak and Nesterov),
• adaptive stepsizes (e.g., Adagrad, ADAM, Barzilai-Borwein,
Malitsky-Mishchenko) and line search,
•minibatching and importance sampling.
Some of these methods reduce the effect of conditioning provably,
and some are heuristics which often work but sometimes fail. How-
ever, first order methods are inherently incapable to remove the
effect of conditioning.

Newton’s Method

It will be useful to recall classical Newton’s method:

xk+1 = xk −
[

1
n

n∑
i=1
∇2fi(xk)

]−1

∇f (xk) (2)

=
[

1
n

n∑
i=1
∇2fi(xk)

]−1 [1
n

n∑
i=1
∇2fi(xk)xk −∇f (xk)

]
.

Fact. If f is µ-strongly convex and its Hessian is Lipschitz continu-
ous, then if ‖x0−x∗‖ is small enough (where x∗ = arg min f ), then
the iterates (2) of Newton’s method converge to x∗ quadratically:
‖xk+1 − x∗‖ ≤ 1

2‖x
k − x∗‖2. This means that

k ≥ O
(

log2 log2
1
ε

)
⇒ ‖xk − x∗‖ ≤ ε.

Motivation II: Issues with Existing
Stochastic 2nd Order Methods

Because of what we said above, there is a lot of effort to de-
velop efficient stochastic 2nd order methods.
Almost every such method has the form

xk+1 = xk − (Hk)−1gk,

where Hk ≈ ∇2f (xk) is a stochastic approximation of the Hessian
and gk ≈ ∇f (xk) is a stochastic gradient approximation of the
gradient. Most methods let

gk = 1
|Skg |

∑
i∈Skg

∇fi(xk), Hk = 1
|SkH|

∑
i∈SkH

∇2fi(xk),

where SkH and Skg are suitably chosen random subsets of
{1, 2, . . . , n}. However, all these methods suffer from severe is-
sues:
• they require O(ε−1) or even O(ε−2) samples in each
iteration, where ε is the target accuracy. The number of
required samples often exceeds n in theory,
• the resulting convergence rate is worse than the rate of first
order methods.

New Algorithm: Stochastic Newton

Algorithm 1: Stochastic Newton (SN)
Initialize: Choose w0

1, w
0
2, . . . , w

0
n ∈ Rd and

τ ∈ {1, 2, . . . , n}
for k = 0, 1, . . . do
Take from memory Hess. estimator: Hk = 1

n

∑n
i=1∇2fi(wk

i );
Take from memory gradient estimator: gk = 1

n

∑n
i=1∇fi(wk

i );
xk+1 =

[
Hk
]−1

[ 1
n

∑n
i=1∇2fi(wk

i )wk
i − gk];

Choose a random set Sk ⊆ {1, . . . , n} of cardinality τ ;
Update

wk+1
i =

xk+1, i ∈ Sk

wk
i , i /∈ Sk

Update gk+1 = gk +
∑

i∈Sk(∇fi(xk+1)−∇fi(wk
i ));

Update Hk+1 = Hk +
∑

i∈Sk(∇2fi(xk+1)−∇2fi(wk
i ))

end

Theorem 1 (Stochastic Newton)

The random iterates of SN (Algorithm 1) satisfy the recursion

Ek
[
Wk+1

]
≤
(

1− τ

n
+ τ

n

(
H

2µ

)2
Wk

)
Wk,

whereWk def= 1
n

∑n
i=1

∥∥∥wk
i − x?

∥∥∥2
. Furthermore, if ‖w0

i − x?‖ ≤
µ
H for i = 1, . . . , n, then

Ek
[
Wk+1

]
≤
(

1− 3τ
4n

)
Wk.

New Algorithm: Stochastic Cubic Newton

Motivation: the step of Newton method might be too aggressive.
To control it, we can add cubic regularization.
Our algorithm:

Ψk def=
〈

1
n

n∑
i=1
∇fi(wk

i ), x− xk
〉

+ 1
2n

n∑
i=1
‖x− wk

i ‖2
∇2fi(wki )

xk+1 = argmin
x

{
Ψk(x) + M

6n

n∑
i=1
‖x− wk

i ‖3
}
.

Theorem 2 (Stochastic Cubic Newton)

The random iterates of SCN satisfy the recursion

Ek
[
Vk+1

]
≤
(

1− τ

n
+ τ

n

((M + H)
√

2
3µ3

2

)3/2√
Vk
)
Vk,

where Vk def= 1
n

∑n
i=1

(
f (wk

i )− f (x?)
)3

2
. Furthermore, if the vec-

tors wk
i are close enough to x∗, then

Ek
[
Vk+1

]
≤
(

1− τ

2n

)
Vk.

Experiments
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Figure 1:Logistic regression. Top: Newton methods, bottom: cubic Newton
methods. Left: µ = 1

100n, right: µ = 1
10000n.

Experiments conclusion: stochastic update allows convergence with
smaller M . When M = 0 is already optimal, there is no improve-
ment.


