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Problem

We want to solve the finite-sum optimization problem

(1)

e Problem (1) has many applications in machine learning,
data science and engineering.

e We focus on the regime when n is very large. This is
typically the case in big data settings (e.g., massively
distributed and federated learning).

Assumptions

e Each f; is p-strongly convex (u > 0), i.e
ply = VP fi(x), Vo € RY,
e Fach f; has H-Lipschitz Hessian, i.e.,
VEfi(x) =V fity)ll < Hllz —yl|, Yo,y € R

Our Contribution

We develop two new simple and fundamental stochastic
second-order methods:

e Stochastic Newton (SN) method,
e Stochastic Cubic Newton (SCN) method.

Our methods have highly desirable properties:

e Cost of 1 iteration does not depend on n,

e (Local) convergence rate does not depend on the conditioning of
the problem.

Motivation I: The Curse of
1st Order Methods

[n this regime, the state of the art methods for solving (1) are
variants of stochastic gradient descent. However, the perfor-
mance of all first order methods depends heavily on the condi-
tioning of the problem. Various strategies have been proposed to
address this problem:

e preconditioning (e.g., data normalization, layer and batch
normalization),
e momentum (e.g., Polyak and Nesterov),

e adaptive stepsizes (e.g., Adagrad, ADAM, Barzilai-Borwein,
Malitsky-Mishchenko) and line search,

e minibatching and importance sampling.

Some of these methods reduce the effect of conditioning provably;,
and some are heuristics which often work but sometimes fail. How-
ever, first order methods are inherently incapable to remove the
effect of conditioning.

Newton’s Method

It will be useful to recall classical Newton’s method:
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Fact. If f is p-strongly convex and its Hessian is Lipschitz continu-
ous, then if ||2" — z*|| is small enough (where z* = arg min f), then
the iterates (2) of Newton’s method converge to x* quadratically:
|+t — 2*|| < 5f|a® — 2*|]%. This means that

1
k>0 (10g2 log, g> = [|2" — 2*|| < e.

Motivation I1: Issues with Existing
Stochastic 2nd Order Methods

Because of what we said above, there is a lot of effort to de-
velop efficient stochastic 2nd order methods.

Almost every such method has the form
$k+1 _ le'k . (Hk)—l k

where H* ~ V2 f(z") is a stochastic approximation of the Hessian
and ¢° ~ Vf(z") is a stochastic gradient approximation of the
gradient Most methods let
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where S}, and S;f are suitably chosen random subsets of
{1,2,...,n}. However, all these methods suffer from severe is-
sues:

o they require O(e 1) or even O(e?) samples in each
iteration, where € is the target accuracy. The number of
required samples often exceeds n in theory;,

e the resulting convergence rate is worse than the rate of first
order methods.

New Algorithm: Stochastic Newton

Algorithm 1: Stochastic Newton (SN)

Initialize: Choose w!, w, ..., w! € R? and
re€{l,2,...,n}

for k=0,1,... do

Take from memory Hess. estimator: H* =1 Z 1V2 filw )
Take from memory gradient estimator: ¢* = "V fi(wh);

ot = [ T VRt - o]

Choose a random set S¥ C {1,...,n} of cardinality 7:

Update
. ZIZ’k—H, = Sk
w. p—
Z wF,  i¢ SF
Update ¢"™ = ¢" + 3 icqu(V fi(z"h) — V fi(w)));
Update H*! = HY 4+ 5 cq(V2fa) = V2 ()
end

Theorem 1 (Stochastic Newton)

The random iterates of SN (Algorithm 1) satisfy the recursion

E, W] < (1 1y T(i) W’“)Wk

f 2 :
Where Wk d:e %2?21 H’LUf7 — ZE* . Furthermore, lf ng — CC*H S

p .
g lore=1,...,n, then

E, [W’m] (1 _ i’—D Wk

New Algorithm: Stochastic Cubic Newton

Motivation: the step of Newton method might be too aggressive.
To control it, we can add cubic regularization.
Our algorithm°

def ! -
ph &« < va@ , L — X >_|_%22H33—wfu2v2fi(wf)
M n
;z;"““—argmin{‘lfk( )+ =2 o - Zﬂﬁ}.

Theorem 2 (Stochastic Cubic Newton)

The random iterates of SCN satisty the recursion

E, [Vkﬂ] < (1 _%+%<(M J;g) ﬂ)”ﬂ)\}’“,

3

where VF & Ly ( fwd) — f (x*)y . Furthermore, if the vec-

(4

tors w? are close enough to x*, then

B, [V < (1 _ %) vk

Experiments
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Figure 1:Logistic regression Top: Newton methods, bottom: cubic Newton

methods. Left: u = 1001()On'

100 ——, right: p =

Experiments conclusion: stochastic update allows convergence with
smaller M. When M = 0 is already optimal, there is no improve-
ment.



