Sinkhorn Algorithm

Problem 1: Matrix Scaling

Given a matrix X" € R?%" find vectors u,v € R"”

such that
W diag(u) X diag(v)
is doubly stochastic, i.e. W1 =1and W'l = 1.

Motivation

e Matrix preconditioning for improved linear algebra
operations such as solving X' w = b.

e Ranking web page significance: take network
connectivity matrix and find the stationary
distribution of its doublly-stochastic form

e Eistimation of transition probabilities in Markov
chains; trafhic and transportation planning:; network
optimization (see |2] for more details).

Sinkhorn Algorithm

Algorithm 1: Sinkhorn Algorithm.

Input : X

for k=1,... do

Xt = XE/| XE for all 4;
X:’;” — X;]§+1/\|X;]§HH1 for all j:
end

Note that
log X" = log X* + diag(uf, ..., u")11",
log X% = log X" + 11 diag(v7 ™, ..., 0.

n

This is very helpful for showing the equivalence.
Can be trivially generalized to finding W such that W1 =
p, W'l =gqforany p,q € Ri.
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Problem 2: Entropy Regularization

Introduce entropy penalty:

st. Xl=p, X'1=q.

Linear Programming

Given a matrix C € R}%"™ and vectors p,q € R’ such

that >, p; = X1, q; solve

n
min C.- X,
XeRan ijzl 7’.] Z]

st. Xl=p, X'1l=¢q, X >0.

Motivation: discrete optimal transport.

as a Special Case of Stochastic Mirror Descent

Problem 3: Nonsmooth Minimization

Given matrices Ay,..., A, € Rﬁiﬁd and vectors

bi,...,bn € R, solve

1 m
min — » KCL(A;x||b;).

reRI M i—1

Problem Properties

For f;(x) « JCL(A;z||b;) the gradients are given by
A;
Vfi(z) = A log b-m’
where log and division are taken coordinate-wise. Note f;

is nonsmooth, but is relatively smooth w.r.t. w, i.e.
sz‘(xa y) < Lti(xv y) with L; = INaX]<j<n, Zgzl(A’i)jp'

Main result

known

Stochastic Mirror Descent = Sinkhorn algorithm "=

Bregman Projections

(1

S (Ci X +vXilog X,5) = KL(X|| XY) + const,

1,7=1

where X° % exp(—C/~).
Let w: R? — R be a strictly convex function. The
associated Bregman divergence is

ef
Dy(z,y) = w(z) — wly) — (Vw(y), z — y).
If w(iz) = XL, x;(logx; — 1), then Dy (x,y) is the
Kullback-Leibler divergence,

def < L
KL(x|ly) = >_(z; logg — 1+ yi).
i=1 i
Thus, we are interested in projecting onto the inter-
section of some sets C, ..., C,,

in D 0.
$€rﬁl§§@ ol 2

Algorithm 2: Stochastic projections.

Input : 2";

for k=1,... do
Sample 1 € {1,...,m} ;
phtl — argmin, o D,(z, z");

end

Method of Stochastic Bregman projections .

Algorithm 3: Stochastic Mirror Descent.

Input : ZEO, {fyk}k;
for k=1,... do

Sample i € {1,...,m};
Vw(@™) = Vw(z") — 3.V fi(z");
end

Intuition

Since w(x) = XL, x;(logx; — 1), Vw(x) = log(x). Then,
the iterates live in a certain range space,

log(z""!) € log(z") + Range(A "),
where A= (A/,..., A"

To show equivalence with Problems 1-2, we set «
vec(X), d = n? A, Ay € {0,1}, Ajz = X1, Ao
XTl, b1 — P, b2 — (.

New insight: there is no guarantee for convergence
of stochastic mirror descent on that problem, because
JCL(-||b) is a nonsmooth function. Moreover, Problem
3 is not constrained, so there is no strong convex-
ity. This is a gap in theory of stochastic mirror
descent.
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