Sinkhorn Algorithm as a Special Case of Stochastic Mirror Descent

Problem 1: Matrix Scaling

Given a matrix $X^0 \in \mathbb{R}^{n \times n}_{++}$, find vectors $u, v \in \mathbb{R}^n_+$ such that

 $W \stackrel{\text{def}}{=} \operatorname{diag}(u) X^0 \operatorname{diag}(v)$

is doubly stochastic, i.e. W1 = 1 and $W^{\top}1 = 1$.

Motivation

- Matrix preconditioning for improved linear algebra operations such as solving $X^0 w = b$.
- Ranking web page significance: take network connectivity matrix and find the stationary distribution of its doubly-stochastic form
- Estimation of transition probabilities in Markov chains; traffic and transportation planning; network optimization (see [2] for more details).

Sinkhorn Algorithm

Algorithm 1: Sinkhorn Algorithm.

Input : X^0 ; for k = 1, ... do $X_{i}^{k+1} = X_{i}^{k} / \|X_{i}^{k}\|_{1}$ for all i; $X_{i}^{k+2} = X_{i}^{k+1} / \|X_{i}^{k+1}\|_1$ for all j; end

Note that

 $\log X^{k+1} = \log X^k + \operatorname{diag}(u_1^k, \dots, u_n^k) 11^\top,$ $\log X^{k+2} = \log X^{k+1} + 11^{\top} \operatorname{diag}(v_1^{k+1}, \dots, v_n^{k+1}).$

This is very helpful for showing the equivalence. Can be trivially generalized to finding W such that W1 = $p, W^{\top} 1 = q$ for any $p, q \in \mathbb{R}^d_+$.

- [1] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in neural information processing systems, 2013.
- [2] Bahman Kalantari, Isabella Lari, Federica Ricca, and Bruno Simeone. On the complexity of general matrix scaling and entropy minimization via the ras algorithm. Mathematical Programming, 2008.
- [3] Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The American Mathematical Monthly, 1967.

Konstantin Mishchenko

KAUST

Problem 2: Entropy Regularization

Introduce entropy penalty: $\min_{X \in \mathbb{R}^{n \times n}} \sum_{i,j=1}^{n} (C_{ij} X_{ij} + \gamma X_{ij} \log X_{ij})$

s.t. $X^{\top} 1 = p, X^{\top} 1 = q.$

Linear Programming

Given a matrix $C \in \mathbb{R}_{++}^{n \times n}$ and vectors $p, q \in \mathbb{R}_{+}^{n}$ such that $\sum_{i=1}^{n} p_i = \sum_{i=1}^{n} q_i$ solve $\min_{X \in \mathbb{R}^{n \times n}} \sum_{i,j=1}^{n} C_{ij} X_{ij}$ s.t. $X1 = p, X^{\top}1 = q, X \ge 0.$

Motivation: discrete optimal transport.

Bregman Projections

 $\sum_{i,j=1}^{N} (C_{ij}X_{ij} + \gamma X_{ij}\log X_{ij}) = \mathcal{KL}(X||X^0) + \text{const},$

where $X^0 \stackrel{\text{def}}{=} \exp(-C/\gamma)$.

Let $\omega \colon \mathbb{R}^d \to \mathbb{R}$ be a strictly convex function. The associated **Bregman divergence** is $D_{\omega}(x,y) \stackrel{\text{def}}{=} \omega(x) - \omega(y) - \langle \nabla \omega(y), x - y \rangle.$ If $\omega(x) = \sum_{i=1}^{d} x_i (\log x_i - 1)$, then $D_{\omega}(x, y)$ is the

Kullback-Leibler divergence,

$$\mathcal{KL}(x||y) \stackrel{\text{def}}{=} \sum_{i=1}^{n} (x_i \log \frac{x_i}{y_i} -$$

Thus, we are interested in projecting onto the intersection of some sets C_1, \ldots, C_m

$$\min_{x\in\bigcap_{i=1}^m C_i} D_{\omega}(x,x^0).$$

Algorithm 2: Stochastic projections.

Input : x^0 ; for k = 1, ... doSample $i \in \{1, \ldots, m\}$; $|x^{k+1} = \operatorname{argmin}_{x \in C_i} D_{\omega}(x, x^k);$ end

Problem 3: Nonsmooth Minimization

Given matrices $A_1, \ldots, A_m \in \mathbb{R}^{n_i \times d}_{++}$ and vectors $b_1, \ldots, b_m \in \mathbb{R}^{n_i}_{++}$ solve $\min_{x \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m \mathcal{KL}(A_i x || b_i).$

For $f_i(x) \stackrel{\text{def}}{=} \mathcal{KL}(A_i x || b_i)$ the gradients are given by

Main result

Stochastic Mirror Descent $\stackrel{\text{new}}{=}$ Sinkhorn algorithm $\stackrel{\text{known}}{=}$ Method of Stochastic Bregman projections.

 $x_i + y_i$).

Algorithm 3: Stochastic Mirror Descent. Input : x^0 , $\{\gamma_k\}_k$; for k = 1, ... do Sample $i \in \{1, ..., m\};$ $\nabla \omega(x^{k+1}) = \nabla \omega(x^k) - \gamma_k \nabla f_i(x^k);$ end

Intuition

Since $\omega(x) = \sum_{i=1}^{d} x_i (\log x_i - 1), \nabla \omega(x) = \log(x)$. Then, the iterates live in a certain range space, $\log(x^{k+1}) \in \log(x^0) + \operatorname{Range}(A^{\top}),$ where $A = (A_1^{\top}, \dots, A_m^{\top})^{\top}$. To show equivalence with Problems 1-2, we set x = $\operatorname{vec}(X), d = n^2, A_1, A_2 \in \{0, 1\}^d, A_1x = X1, A_2x = X$ $X^+1, b_1 = p, b_2 = q.$ New insight: there is no guarantee for convergence

descent.

Problem Properties

 $\nabla f_i(x) = A_i^{\top} \log \frac{A_i x}{b_i},$ where log and division are taken coordinate-wise. Note f_i is **nonsmooth**, but is **relatively** smooth w.r.t. ω , i.e. $D_{f_i}(x,y) \leq L_i D_{\omega}(x,y)$ with $L_i = \max_{1 \leq j \leq n_i} \sum_{p=1}^d (A_i)_{jp}$.

of stochastic mirror descent on that problem, because $\mathcal{KL}(\cdot||b)$ is a nonsmooth function. Moreover, Problem 3 is not constrained, so there is **no strong convex**ity. This is a gap in theory of stochastic mirror