Sinkhorn Algorithm as a Special Case of Stochastic Mirror Descent

Konstantin Mishchenko

KAUST

Problem 1: Matrix Scaling
Given a matrix $X^{0} \in \mathbb{R}_{++}^{n \times n}$, find vectors $u, v \in \mathbb{R}_{+}^{n}$ such that

$$
W^{\text {def }} \operatorname{diag}(u) X^{0} \operatorname{diag}(v)
$$

is doubly stochastic, i.e. $W 1=1$ and $W^{\top} 1=1$.

Motivation

- Matrix preconditioning for improved linear algebra operations such as solving $X^{0} w=b$.
- Ranking web page significance: take network connectivity matrix and find the stationary distribution of its doublly-stochastic form
- Estimation of transition probabilities in Markov chains; traffic and transportation planning; network optimization (see [2] for more details).

Sinkhorn Algorithm

Algorithm 1: Sinkhorn Algorithm
Input : X^{0};
for $k=1, \ldots$ do
$X_{i:}^{k+1}=X_{i: /}^{k} /\left\|X_{i:}^{k}\right\|_{1}$ for all i;
$X_{i j}^{k+2}=X_{: j}^{k+1} /\left\|X_{j}^{k+1}\right\|_{1}$ for all $j ;$
end
Note that
$\log X^{k+1}=\log X^{k}+\operatorname{diag}\left(u_{1}^{k}, \ldots, u_{n}^{k}\right) 11^{\top}$,
$\log X^{k+2}=\log X^{k+1}+11^{\top} \operatorname{diag}\left(v_{1}^{k+1}, \ldots, v_{n}^{k+1}\right)$.
This is very helpful for showing the equivalence. Can be trivially generalized to finding W such that $W 1=$ $p, W^{\top} 1=q$ for any $p, q \in \mathbb{R}_{+}^{d}$.
[1] Marco Cuturi.
Sinkhorn distances: Lightspeed computation of optimal transport.
In Advances in neural information processing systems, 2013.
[2] Bahman Kalantari, Isabella Lari, Federica Ricca, and Bruno
Simeone.
On the complexity of general matrix scaling and entropy minimization via the ras algorithm.
3) Richard Sint

Diagonal equivalence to matrices with prescribed row and column sums.
The American Mathematical Monthly. 1967

Problem 2: Entropy Regularization

 Introduce entropy penalty:$$
\begin{aligned}
\min _{X \in \mathbb{R}^{n \times n}} & \sum_{i, j=1}^{n}\left(C_{i j} X_{i j}+\gamma X_{i j} \log X_{i j}\right) \\
\text { s.t. } & X 1=p, X^{\top} 1=q
\end{aligned}
$$

Linear Programming
Given a matrix $C \in \mathbb{R}_{++}^{n \times n}$ and vectors $p, q \in \mathbb{R}_{+}^{n}$ such that $\sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} q_{i}$ solve

$$
\begin{aligned}
\min _{X \in \mathbb{R}^{n \times n}} & \sum_{i, j=1}^{n} C_{i j} X_{i j} \\
\text { s.t. } & X 1=p, X^{\top} 1=q, X \geqslant 0 .
\end{aligned}
$$

Motivation: discrete optimal transport.
Main result
Stochastic Mirror Descent $\stackrel{\text { new }}{=}$ Sinkhorn algorithm $\stackrel{\text { known }}{=}$ Method of Stochastic Bregman projections

Bregman Projections

$\sum_{i, j=1}^{n}\left(C_{i j} X_{i j}+\gamma X_{i j} \log X_{i j}\right)=\mathcal{K} \mathcal{L}\left(X \| X^{0}\right)+$ const, where $X^{0} \stackrel{\text { def }}{=} \exp (-C / \gamma)$.
Let $\omega: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a strictly convex function. The associated Bregman divergence is

$$
D_{\omega}(x, y) \stackrel{\text { def }}{=} \omega(x)-\omega(y)-\langle\nabla \omega(y), x-y\rangle .
$$

If $\omega(x)=\sum_{i=1}^{d} x_{i}\left(\log x_{i}-1\right)$, then $D_{\omega}(x, y)$ is the Kullback-Leibler divergence,

$$
\mathcal{K} \mathcal{L}(x \| y) \stackrel{\text { def }}{=} \sum_{i=1}^{n}\left(x_{i} \log \frac{x_{i}}{y_{i}}-x_{i}+y_{i}\right)
$$

Thus, we are interested in projecting onto the intersection of some sets C_{1}, \ldots, C_{m}

$$
\min _{x \in \bigcap_{i=1}^{m} C_{i}} D_{\omega}\left(x, x^{0}\right)
$$

Algorithm 2: Stochastic projections. \qquad
Input : x^{0};
for $k=1, \ldots$ do
Sample $i \in\{1, \ldots, m\}$;
$x^{k+1}=\operatorname{argmin}_{x \in C_{i}} D_{\omega}\left(x, x^{k}\right) ;$
end

Problem 3: Nonsmooth Minimization
Given matrices $A_{1}, \ldots, A_{m} \in \mathbb{R}_{++}^{n_{i} \times d}$ and vectors $b_{1}, \ldots, b_{m} \in \mathbb{R}_{++}^{n_{i}}$ solve

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{K} \mathcal{L}\left(A_{i} x \| b_{i}\right)
$$

Problem Properties
For $f_{i}(x) \stackrel{\text { def }}{=} \mathcal{K} \mathcal{L}\left(A_{i} x| | b_{i}\right)$ the gradients are given by

$$
\nabla f_{i}(x)=A_{i}^{\top} \log \frac{A_{i} x}{b_{i}}
$$

where \log and division are taken coordinate-wise. Note f_{i} is nonsmooth, but is relatively smooth w.r.t. ω, i.e
$D_{f_{i}}(x, y) \leqslant L_{i} D_{\omega}(x, y)$ with $L_{i}=\max _{1 \leqslant j \leqslant n_{i}} \sum_{p=1}^{d}\left(A_{i}\right)_{j p}$

