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Problem 1: Matrix Scaling

Given a matrix X0 ∈ Rn×n
++ , find vectors u, v ∈ Rn

+
such that

W
def= diag(u)X0diag(v)

is doubly stochastic, i.e. W1 = 1 and W>1 = 1.

Motivation

•Matrix preconditioning for improved linear algebra
operations such as solving X0w = b.

•Ranking web page significance: take network
connectivity matrix and find the stationary
distribution of its doublly-stochastic form
•Estimation of transition probabilities in Markov
chains; traffic and transportation planning; network
optimization (see [2] for more details).

Sinkhorn Algorithm

Algorithm 1: Sinkhorn Algorithm.
Input : X0;
for k = 1, . . . do
Xk+1
i: = Xk

i:/‖Xk
i:‖1 for all i;

Xk+2
:j = Xk+1

:j /‖Xk+1
:j ‖1 for all j;

end
Note that

logXk+1 = logXk + diag(uk1, . . . , ukn)11>,
logXk+2 = logXk+1 + 11>diag(vk+1

1 , . . . , vk+1
n ).

This is very helpful for showing the equivalence.
Can be trivially generalized to findingW such thatW1 =
p, W>1 = q for any p, q ∈ Rd

+.
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Problem 2: Entropy Regularization

Introduce entropy penalty:

min
X∈Rn×n

n∑
i,j=1

(CijXij + γXij logXij)

s.t. X1 = p, X>1 = q.

Linear Programming

Given a matrix C ∈ Rn×n
++ and vectors p, q ∈ Rn

+ such
that ∑n

i=1 pi = ∑n
i=1 qi solve

min
X∈Rn×n

n∑
i,j=1

CijXij

s.t. X1 = p, X>1 = q, X > 0.
Motivation: discrete optimal transport.

Problem 3: Nonsmooth Minimization

Given matrices A1, . . . , Am ∈ Rni×d
++ and vectors

b1, . . . , bm ∈ Rni
++ solve

min
x∈Rd

1
m

m∑
i=1
KL(Aix||bi).

Problem Properties

For fi(x) def= KL(Aix||bi) the gradients are given by

∇fi(x) = A>i log Aix

bi
,

where log and division are taken coordinate-wise. Note fi
is nonsmooth, but is relatively smooth w.r.t. ω, i.e.
Dfi(x, y) 6 LiDω(x, y) with Li = max16j6ni

∑d
p=1(Ai)jp.

Main result

Stochastic Mirror Descent new= Sinkhorn algorithm known= Method of Stochastic Bregman projections .

Bregman Projections

n∑
i,j=1

(CijXij + γXij logXij) = KL(X||X0) + const,

where X0 def= exp(−C/γ).
Let ω : Rd → R be a strictly convex function. The
associated Bregman divergence is

Dω(x, y) def= ω(x)− ω(y)− 〈∇ω(y), x− y〉.
If ω(x) = ∑d

i=1 xi(log xi − 1), then Dω(x, y) is the
Kullback-Leibler divergence,

KL(x||y) def=
n∑
i=1

(xi log xi
yi
− xi + yi).

Thus, we are interested in projecting onto the inter-
section of some sets C1, . . . , Cm

min
x∈

⋂m
i=1Ci

Dω(x, x0).

Algorithm 2: Stochastic projections.
Input : x0;
for k = 1, . . . do
Sample i ∈ {1, . . . ,m} ;
xk+1 = argminx∈CiDω(x, xk);

end

Algorithm 3: Stochastic Mirror Descent.
Input : x0, {γk}k;
for k = 1, . . . do
Sample i ∈ {1, . . . ,m};
∇ω(xk+1) = ∇ω(xk)− γk∇fi(xk);

end

Intuition

Since ω(x) = ∑d
i=1 xi(log xi−1), ∇ω(x) = log(x). Then,

the iterates live in a certain range space,
log(xk+1) ∈ log(x0) + Range(A>),

where A = (A>1 , . . . , A>m)>.
To show equivalence with Problems 1-2, we set x =
vec(X), d = n2, A1, A2 ∈ {0, 1}d, A1x = X1, A2x =
X>1, b1 = p, b2 = q.
New insight: there is no guarantee for convergence
of stochastic mirror descent on that problem, because
KL(·||b) is a nonsmooth function. Moreover, Problem
3 is not constrained, so there is no strong convex-
ity. This is a gap in theory of stochastic mirror
descent.


