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The problem

We consider the finite-sum minimization problem

find x∗ = arg min
x∈Rd

f (x) = 1
n

n∑
i=1
fi(x)

 , (1)

where each fi is L-smooth function (potentially non-convex).
Our goal is to explain convergence of stochastic algorithms.
Assumption 1: For every i, fi is L-smooth, that is, for all
x, y ∈ Rd we have

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖.

Motivation

•Huge dimension d =⇒ first-order methods are more efficient;
•Large dataset size n =⇒ stochastic updates are necessary;
•Fast convergence to approximate solution is preferred =⇒
large stepsizes are paramount.

Algorithms for Problem (1)

Algorithm 1 SGD
Input: x0 ∈ Rd, γ > 0

1: for t = 0, 1, . . . do
2: Sample i uniformly from
{1, . . . , n}

3: xt+1 = xt − γ∇fi(xt)
4: end for

Algorithm 2 IG
Input: x0

0 = x0 ∈ Rd, γ > 0
1: for t = 0, 1, . . . do
2: for i = 0, . . . , n− 1 do
3: xi+1

t = xit − γ∇fi(xit)
4: end for
5: x0

t+1 = xnt
6: end for

Algorithm 3 RR
Input: x0

0 = x0 ∈ Rd, γ > 0
1: for t = 0, 1, . . . do
2: Sample a permutation
π0, . . . , πn−1 of {1, . . . , n}

3: for i = 0, . . . , n− 1 do
4: xi+1

t = xit − γ∇fπi(xit)
5: end for
6: x0

t+1 = xnt
7: end for

Algorithm 4 SO
Input: x0

0 = x0 ∈ Rd, γ > 0
1: Sample a permutation
π0, . . . , πn−1 of {1, . . . , n}

2: for t = 0, 1, . . . do
3: for i = 0, . . . , n− 1 do
4: xi+1

t = xit − γ∇fπi(xit)
5: end for
6: x0

t+1 = xnt
7: end for

SGD

Stochastic Gradient Descent (SGD) is
one of the most popular algorithms that sam-
ples functions uniformly at each iteration.
Pros: unbiased update, Ei[xt+1] = xt −
γ∇f (xt); easy to analyze.
Cons: does not use the finite-sum structure;
access to arbitrary sample is expensive (cache
misses).
Rate of convergence:a O

( 1
T

)

IG

Incremental Gradient (IG) is an alterna-
tive to SGD that performs cyclic data passes.
Pros: each function gets used exactly once per
epoch; fast sequential access to the memory.
Cons: slow if the data are structured/sorted;
always slower than gradient descent.
Rate of convergence: O

(
n2

T 2

)
(better than

SGD when T ≥ n2)

RR/SO

Random Reshuffling (RR) and Shuffle-
Once (SO) improve upon IG by sampling a
permutation each epoch (RR) or just shuffling
the data once (SO).
Pros: faster rate than that of IG.
Cons: hard to analyze as Eπ[xi+1

t ] 6= xit −
γ∇f (xit).
Rate of convergence (new!): O

(
n
T 2

)
(bet-

ter than SGD when T ≥ n)

aFor all methods, the rate is provided in the strongly convex case
and in terms of full number of computed stochastic gradients T .

Key contributions

1. Tight rates for RR and SO;
2. First result that allows for γ = 1

L;
3. New insight into convergence within each
epoch;
4. Improved estimate of shuffling variance.

New complexities for RR/SO

Let σ2
∗

def= 1
n

∑n
i=1 ‖∇fi(x∗)‖2 be the variance at

the optimum and κ
def= L

µ (convex f ) or σ2 =
supx 1

n

∑n
i=1 ‖∇fi(x) − ∇f (x)‖2 (non-convex f ).

New complexities:
• If all f1, . . . , fn are µ-strongly convex:
O
(
κ log 1

ε +
√
κnσ∗
µ
√
ε

)
;

• If only f = 1
n

∑n
i=1 fi is µ-strongly convex:

O
(
κn log 1

ε +
√
κnσ∗
µ
√
ε

)
;

• If f is convex: O
(
n
ε +

√
nσ∗
ε3/2

)
;

• If f is non-convex (RR only): O
(
n
ε2 +

√
nσ
ε3

)
.

New theoretical insights

Definition 1. For any i, we define the Bregman
divergence of fi as

Dfi(x, y) def= fi(x)− fi(y)− 〈∇fi(y), x− y〉.
fi is called µ-strongly convex if Dfi(x, y) ≥ µ

2‖x −
y‖2 for any x, y ∈ Rd.
Definition 2. Given a permutation π0, . . . , πn−1
and stepsize γ > 0, we let

xi∗
def= x∗ − γ

i−1∑
j=0
∇fπj(x∗).

Clearly, by optimality of x∗, we have xn∗ = x∗.
Lemma 1. [Key recursion] It holds
‖xi+1

t − xi+1
∗ ‖2 = ‖xit − xi∗‖2 + γ2‖∇fπi(xit)−∇fπi(x∗)‖2

− 2γ[Dfπi
(xi∗, xit) + Dfπi

(xit, x∗)−Dfπi
(xi∗, x∗)].

Lemma 1 is used to obtain the following theorem.
Theorem 1. If f1, . . . , fn are µ-strongly convex
and γ ≤ 1

L, then
E[‖xi+1

t − xi+1
∗ ‖2] ≤ (1− γµ)‖xit − xi∗‖2 + 2γ2σ2

Shuffle,

where

σ2
Shuffle

def= max
i=1,...,n

1
γ
E[Dfπi

(xi∗, x∗)]
 .

To compare this to convergence of SGD, we prove
the following upper and lower bounds.
Theorem 2. It holds

γµn

8
σ2
∗ ≤ σ2

Shuffle ≤
γLn

4
σ2
∗.

Experiments

We run experiments on `2 regularized logistic
regression problem and set `2 penalty to be
L√
N
, where N is the dataset size.
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Figure 1:Top: real-sim dataset (N = 72, 309;
d = 20, 958), middle row: w8a dataset (N = 49, 749;
d = 300), bottom: RCV1 dataset (N = 804, 414;
d = 47, 236). Left: convergence of ‖xit − x∗‖2, right:
convergence of SO with different permutations.
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Figure 2:Left: histogram of values of σ2
Shuffle evaluated

on 500,000 sampled permutation. Right: values of
σ2

Shuffle for different values of γ. Both plots are com-
puted for w8a dataset.


