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Goal

min
x∈Rd

F (x) + R(x) + H(Lx), (1)

where F,R,H convex functions, F smooth and
R,H nonsmooth proximable.
We propose a new algorithm, the Primal–
Dual Davis–Yin (PDDY), to solve (1).
PDDY is obtained as a carefully designed
instance of the Davis–Yin Splitting between
monotone operators.
We establish convergence rates for PDDY,
when the algorithm is implemented with a
Variance Reduced (VR) stochastic gra-
dient of F .
In particular: Linear rate for strongly
convex minimization under linear con-
straints (without projecting on the constraints
space).

Primal–Dual optimality

Let x? be a solution to Problem (1). Under a stan-
dard qualification condition,

0 ∈ ∇F (x?) + ∂R(x?) + L∗∂H(Lx?),
i.e., there exists y? ∈ ∂H(Lx?) such that

0 = ∇F (x?) + ∂R(x?) + L∗y?.

Since Lx? ∈ ∂H?(y?),ñ
0
0

ô
∈
ñ
∇F (x?) + ∂R(x?)+ L∗y?

−Lx? + ∂H∗(y?)

ô
.

Monotone operator

M(x, y) :=
ñ
∇F (x) + ∂R(x) + Ly
−Lx + ∂H∗(y)

ô
.

Then, 0 ∈ M(x?, y?). Moreover, M is a monotone
operator: 〈M(x, y)−M(x′, y′), (x, y)−(x′, y′)〉 ≥ 0.
Indeed, M is the sum of a skew symmetric operator
and the subdifferential of F (x) + R(x) + H∗(y).

Davis–Yin Splitting

Solving Problem (1) is equivalent to solving the inclusion 0 ∈M(x?, y?). One idea could be to decompose

M(x, y) =
ñ
∂R(x)

0

ô
︸ ︷︷ ︸

:=A(x,y)

+
ñ

L∗y
−Lx + ∂H∗(y)

ô
︸ ︷︷ ︸

:=B(x,y)

+
ñ
∇F (x)

0

ô
︸ ︷︷ ︸

:=C(x,y)

, (2)

and apply the Davis–Yin Splitting (DYS) algorithm [2] which can solve monotone inclusions of the form
0 ∈ (A+B +C)(x?, y?), see below. DYS generalizes the standard proximal gradient algorithm and relies on
the computation of the resolvent of B, denoted JB(x, y) = (I + B)−1(x, y).
In other words, (x′, y′) = JB(x, y) is equivalent to (x′, y′) ∈ (x, y)−B(x′, y′), which is intractable in general.
Hence one cannot apply DYS directly.

Primal–Dual Davis–Yin

The idea is preconditioning: let P a positive definite symmetric matrix. Then 0 ∈M(x?, y?) is equivalent to
0 ∈ P−1M(x?, y?). Besides, P−1M = P−1A + P−1B + P−1C. Finally P−1A,P−1B,P−1C are monotone
operators under the inner product induced by P . DYS applied to the inclusion 0 ∈ (P−1A + P−1B +
P−1C)(x?, y?) relies on the computation of the resolvent of P−1B.
In other words, (x′, y′) = JP−1B(x, y) is equivalent to P (x′, y′) ∈ P (x, y)−B(x′, y′), which only relies on the
proximity operator of H denoted

proxH(x) = arg min
y∈Rd

H(y) + 1
2
‖x− y‖2,

if [1]

P :=
ñ
I 0
0 γ

τI − γ
2LL∗

ô
.

The resulting algorithm is the PDDY algorithm. It inherits the convergence properties of DYS.

Davis–Yin Algorithm DYS(A,B,C) [2]
1: Input: v0 ∈ Z , γ > 0
2: for k = 0, 1, 2, . . . do
3: zk = JγB(vk)
4: uk+1 = JγA(2zk − vk − γC(zk))
5: vk+1 = vk + uk+1 − zk
6: end for

Stochastic PDDY algorithm (proposed)(
deterministic version: gk+1 = ∇F (xk)

)
1: Input: p0 ∈ X , y0 ∈ Y , γ > 0, τ > 0
2: for k = 0, 1, 2, . . . do
3: yk+1 = proxτH∗

(
yk + τL(pk − γL∗yk)

)
4: xk = pk − γL∗yk+1

5: sk+1 = proxγR
(
2xk − pk − γgk+1)

6: pk+1 = pk + sk+1 − xk
7: end for

Other primal–dual algorithms like Condat-Vũ I, Condat-Vũ II and PD3O can be derived from DYS as
well.
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VR stochastic gradient

Several VR stochastic gradient estimators used in
the literature satisfy the following [3].
There exist α, β, δ ≥ 0, ρ ∈ (0, 1] and a stochastic
process denoted by (σk)k, s.t.,

Ek(gk+1) = ∇F (xk)
Ek(‖gk+1 −∇F (x?)‖2) ≤ 2αDF (xk, x?) + βσ2

k

Ek(σ2
k+1) ≤ (1− ρ)σ2

k + 2δDF (xk, x?),
where DF Bergman divergence of F .

Convergence rates

Assume γ small enough and γτ‖L‖2 < 1.
Then, EDF (x̄k, x?) + EDH∗(ȳk+1, y?) +
EDR(s̄k+1, s?) = O (1/k).
If R strongly convex and H smooth, then
E‖xk − x?‖2 + E‖yk − y?‖2 converges linearly.
If F strongly convex, R ≡ 0 and H(x) = ∞
except at H(b) = 0, E‖xk − x?‖2 + E‖yk −
y?‖2 converges linearly to zero (x? is the
solution to minF s.t. Lx = b). Complexity:
O(κ+χ log(1/ε)), where κ (resp. χ) condition
number of F (resp. L∗L).
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