

Goal

$$\min_{x \in \mathbb{R}^d} F(x) + R(x) + H(Lx), \qquad (1)$$

where F, R, H convex functions, F smooth and R, H nonsmooth proximable.

We propose a new algorithm, the **Primal**-Dual Davis–Yin (PDDY), to solve (1). PDDY is obtained as a carefully designed instance of the Davis–Yin Splitting between monotone operators.

We establish **convergence rates** for PDDY, when the algorithm is implemented with a Variance Reduced (VR) stochastic gradient of F.

In particular: Linear rate for strongly convex minimization under linear constraints (without projecting on the constraints space).

Primal–Dual optimality

Let x^* be a solution to Problem (1). Under a standard qualification condition,

$$0 \in \nabla F(x^*) + \partial R(x^*) + L^* \partial H(Lx^*),$$

i.e., there exists $y^* \in \partial H(Lx^*)$ such that
$$0 = \nabla F(x^*) + \partial R(x^*) + L^* y^*.$$
Since $Lx^* \in \partial H^*(y^*),$
$$\begin{bmatrix} 0\\ 0 \end{bmatrix} \in \begin{bmatrix} \nabla F(x^*) + \partial R(x^*) + L^* y^*\\ -Lx^* & + \partial H^*(y^*) \end{bmatrix}.$$

Monotone operator

$$M(x,y) \coloneqq \begin{bmatrix} \nabla F(x) + \partial R(x) + Ly \\ -Lx & + \partial H^*(y) \end{bmatrix}.$$

Then, $0 \in M(x^{\star}, y^{\star})$. Moreover, M is a monotone operator: $\langle M(x, y) - M(x', y'), (x, y) - (x', y') \rangle \ge 0.$ Indeed, M is the sum of a skew symmetric operator and the subdifferential of $F(x) + R(x) + H^*(y)$.

Dualize, Split, Randomize: Fast Nonsmooth Optimization Algorithms

Laurent Condat Konstantin Mishchenko Adil Salim

KAUST, Thuwal, Saudi Arabia.

Davis–Yin Splitting

Solving Problem (1) is equivalent to solving the inclusion 0

M(x, y) = $\equiv B$

and apply the **Davis–Yin Splitting (DYS)** algorithm [2] which can solve monotone inclusions of the form $0 \in (A + B + C)(x^*, y^*)$, see below. DYS generalizes the standard proximal gradient algorithm and relies on the computation of the resolvent of B, denoted $J_B(x, y) = (I + B)^{-1}(x, y)$. In other words, $(x', y') = J_B(x, y)$ is equivalent to $(x', y') \in (x, y) - B(x', y')$, which is intractable in general. Hence one cannot apply DYS directly.

Primal–Dual Davis–Yin

The idea is preconditioning: let P a positive definite symmetric matrix. Then $0 \in M(x^*, y^*)$ is equivalent to $0 \in P^{-1}M(x^*, y^*)$. Besides, $P^{-1}M = P^{-1}A + P^{-1}B + P^{-1}C$. Finally $P^{-1}A, P^{-1}B, P^{-1}C$ are monotone operators under the inner product induced by P. DYS applied to the inclusion $0 \in (P^{-1}A + P^{-1}B + P^{-1}B)$ $P^{-1}C(x^{\star}, y^{\star})$ relies on the computation of the resolvent of $P^{-1}B$. In other words, $(x', y') = J_{P^{-1}B}(x, y)$ is equivalent to $P(x', y') \in P(x, y) - B(x', y')$, which only relies on the proximity operator of H denoted

$$\operatorname{prox}_{H}(x) = \operatorname*{arg\,min}_{y \in \mathbb{R}^{d}} H(y) + \frac{1}{2} ||x - y||^{2},$$

$$P \coloneqq \begin{bmatrix} I & 0\\ 0 & \frac{\gamma}{\tau}I - \gamma^2 LL^2 \end{bmatrix}$$

The resulting algorithm is the **PDDY algorithm**. It inherits the convergence properties of DYS.

	Sto
Davis–Yin Algorithm $DYS(A, B, C)$ [2]	(de
1: Input: $v^0 \in \mathcal{Z}$, $\gamma > 0$	1:
2: for $k = 0, 1, 2,$ do	2:
3: $z^k = J_{\gamma B}(v^k)$	3:
4: $u^{k+1} = J_{\gamma A}(2z^k - v^k - \gamma C(z^k))$	4:
5: $v^{k+1} = v^k + u^{k+1} - z^k$	5:
6: end for	6:
	 7·

if [1]

Other primal-dual algorithms like Condat-Vũ I, Condat-Vũ II and PD3O can be derived from DYS as well.

Contact

adil.salim,laurent.condat,konstantin.mishchenko,peter.richtarik@kaust.edu.sa

$\in M(x^{\star},$	y^{\star}). One idea cou	ld be to decompose
$\begin{bmatrix} L^* y \\ \partial H^*(y) \end{bmatrix}$	$+\begin{bmatrix} \nabla F(x)\\ 0 \end{bmatrix},$	(2)
(x,y)	=C(x,y)	
)] which co	n solve monotone	inclusions of the form

Peter Richtárik

Stochastic PDDY algorithm (proposed) eterministic version: $g^{k+1} = \nabla F(x^k)$ Input: $p^0 \in \mathcal{X}, y^0 \in \mathcal{Y}, \gamma > 0, \tau > 0$ for k = 0, 1, 2, ... do $y^{k+1} = \operatorname{prox}_{\tau H^*} \left(y^k + \tau L(p^k - \gamma L^* y^k) \right)$ $x^k = p^k - \gamma L^* y^{k+1}$ $s^{k+1} = \operatorname{prox}_{\gamma R} \left(2x^k - p^k - \gamma g^{k+1} \right)$ $p^{k+1} = p^k + s^{k+1} - x^k$

7: end for

Several VR stochastic gradient estimators used in the literature satisfy the following [3]. There exist $\alpha, \beta, \delta \geq 0, \rho \in (0, 1]$ and a stochastic process denoted by $(\sigma_k)_k$, s.t.,

 $\mathbb{E}_k(g^{k+1}) = \nabla F(x^k)$ $\mathbb{E}_k(\|g^{k+1} - \nabla F(x^\star)\|^2) \le 2\alpha D_F(x^k, x^\star) + \beta \sigma_k^2$ $\mathbb{E}_k(\sigma_{k+1}^2) \le (1-\rho)\sigma_k^2 + 2\delta D_F(x^k, x^\star),$

Assu	
Th	
$\mathbb{E}I$	
If	
$\mathbb{E} \ $	
If J	
exc	
$y^{\star} $	
sol	
$\mathcal{O}($	
nur	

VR stochastic gradient

where D_F Bergman divergence of F.

Convergence rates

ume γ small enough and $\gamma \tau \|L\|^2 < 1$.

nen, $\mathbb{E}D_F(\bar{x}^k, x^\star) + \mathbb{E}D_{H^*}(\bar{y}^{k+1}, y^\star) +$ $D_R(\bar{s}^{k+1}, s^\star) = \mathcal{O}(1/k).$

R strongly convex and H smooth, then $||x^k - x^\star||^2 + \mathbb{E}||y^k - y^\star||^2$ converges linearly. F strongly convex, $R \equiv 0$ and $H(x) = \infty$ cept at H(b) = 0, $\mathbb{E} \| x^k - x^{\star} \|^2 + \mathbb{E} \| y^k - x^{\star} \|^2$ $|^2$ converges linearly to zero (x^* is the lution to min F s.t. Lx = b). Complexity: $(\kappa + \chi \log(1/\varepsilon))$, where κ (resp. χ) condition umber of F (resp. L^*L).

References

[1] L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi. Proximal splitting algorithms: A tour of recent advances, with new twists. preprint arXiv:1912.00137, 2019.

[2] D. Davis and W. Yin. A three-operator splitting scheme and its optimization applications. Set-Valued and Variational Analysis, 25(4):829-858, 2017.

[3] E. Gorbunov, F. Hanzely, and P. Richtárik. A unified theory of SGD: Variance reduction, sampling, quantization and coordinate descent. In International Conference on Artificial Intelligence and Statistics, pages 680–690, 2020.