Handling Optimization Problems with a Big Number of Constraints

Motivation

Most modern stochastic methods for solving (1), such as SGD, SVRG and SAGA, have a version for constrained optimization of the form

$$x^{k+1} = \Pi_{\mathcal{X}}(x^k - \alpha^k g^k),$$

where g^k is a random approximation of $\nabla f(x^k)$, $\alpha^k > 0$ is a stepsize and $\Pi_{\mathcal{X}}(x)$ is the projection of x onto \mathcal{X} . While the cost of computing g^k can be extremely small (e.g., independent of n), cost of projecting onto \mathcal{X} might be very large.

Our Reformulation

We turn the constrained problem (1) into a special unconstrained problem:

$$\min_{x \in \mathbb{R}^d} f(x) + \lambda h(x), \tag{2}$$

where
$$\lambda > 0$$
 and $h(x) \coloneqq \frac{1}{2m} \sum_{j=1}^{m} ||x - \Pi_{\mathcal{X}_j}(x)||^2$.

Assumption on the Sets X_1, \ldots, X_m

Sets $\{\mathcal{X}_j\}_{j=1}^m$ satisfy **linear regularity** property with some constant $\gamma > 0$, i.e., for all $x \in \mathbb{R}^d$ $\mathbf{T} \quad ||^2 \times || \quad \mathbf{T} \quad () ||^2 \quad (\mathbf{0})$

$$\frac{1}{m}\sum_{j}\|x-\Pi_{\mathcal{X}_{j}}x\|^{2} \ge \gamma\|x-\Pi_{\mathcal{X}}(x)\|^{2}.$$
 (3)

Sufficient condition: $\cap_i ri\mathcal{X}_i$ is nonempty

Konstantin Mishchenko¹ Peter Richtárik^{1, 2, 3}

¹ KAUST, ²University of Edinburgh, ³Moscow Institute of Physics and Technology

Choice of λ

Let us denote	If
$x_{\lambda}^{*} \coloneqq \operatorname*{argmin}_{x \in \mathbb{R}^{d}} f(x) + \lambda h(x).$	CO T
Lemma. If we increase λ :	
• $h_{\lambda}^* \coloneqq h(x_{\lambda}^*) \searrow 0$,	
• $f_{\lambda}^* \coloneqq f(x_{\lambda}^*) \nearrow f^* \coloneqq \min_{x \in \mathcal{X}} f(x),$	I
• $L_{\lambda} \to \infty$, where L_{λ} is the problem smoothness.	f
Moreover, for smooth f it holds that	J
$G \sim f^* - f_0^*$	W
$\overline{L^2 + \lambda^2} \leqslant n_\lambda \leqslant \overline{\lambda},$	∇
$f_{\lambda}^{*} \leqslant f^{*} - \frac{\lambda G}{L^{2} + \lambda^{2}}.$	S
where $G \coloneqq \inf_{x \in \mathcal{X}} \ \nabla f(x)\ ^2 / 4$.	

Important Result

Let $x_{\lambda,\varepsilon}$ be such that $f(x_{\lambda,\varepsilon}) + \lambda h(x_{\lambda,\varepsilon}) \leq f(x_{\lambda}^*) + \lambda h(x_{\lambda}^*)$ **Infeasible solution** $x_{\lambda,\varepsilon}$ satisfying $f(x_{\lambda,\varepsilon}) \leq f^*$ **Feasible solution** $\Pi_{\mathcal{X}}(x_{\lambda,\varepsilon})$ satisfying f(IIf f is strongly convex, then we only

Summary of Solution Properties

Lower bound	Quantity	Upper bound	
$\Omega\left(\frac{\lambda}{L^2+\lambda^2}\right)^*$	$f^* - (f^*_\lambda + \lambda h^*_\lambda)$	$O\left(\frac{1}{\lambda}\right)^*$	
$\overline{\Omega\left(\frac{\lambda}{L^2+\lambda^2}\right)^*}$	$f^* - f^*_{\lambda}$	$O\left(\frac{1}{\lambda}\right)^{\dagger}$	
$\Omega\left(\frac{1}{L^2+\lambda^2}\right)^*$	h^*_λ	$ \begin{array}{c} O\left(\frac{1}{\lambda}\right) \\ O\left(\frac{1}{\lambda^2}\right)^{\dagger} \end{array} $	
$\Omega\left(\frac{1}{L^2+\lambda^2}\right)^*$	$\ x_{\lambda}^* - x^*\ ^2$	$O(rac{1}{\lambda})^{\ddagger} \ O(rac{1}{\lambda^2})^{*,\ddagger}$	
$\Omega\left(\frac{1}{L^2+\lambda^2}\right)^*$	$\ x_{\lambda}^* - \Pi_{\mathcal{X}}(x_{\lambda}^*)\ ^2$	$O\left(\frac{1}{\lambda^2}\right)^{\dagger}$	
0	$f(\Pi_{\mathcal{X}}(x^*_{\lambda})) - f^*$	$O\left(rac{1}{\lambda} ight)^{*,\S} \ O(rac{1}{\lambda^2})^{*,\ddagger}$	
0	$f(\Pi_{\mathcal{X}}(x_{\lambda,\varepsilon}) - f^*$	$O\left(\frac{1}{\lambda} + \varepsilon\right)^{*,\S}$ $O(\frac{1}{\lambda^2} + \varepsilon)^{*,\S,\ddagger}$	
Table 1:Lower	r and upper bounds for	different measures	
of solution's	quality. Superscripts r	nean assumptions	

of solution's quality. Superscripts mean assumptions used to prove the bound: * - smoothnes, \dagger - convex-

Feasible Solution

we combine linear regularity to smoothness and onvexity assumptions, we get **Theorem.** If $\lambda \ge \frac{L}{\gamma}$, then

$$f(\Pi_{\mathcal{X}}(x_{\lambda}^*)) \leqslant f^* + \frac{2}{\gamma\lambda}(f^* - f(x_0^*)).$$

in addition, f is strongly convex,

$$(\Pi_{\mathcal{X}}(x_{\lambda}^{*})) \leqslant f^{*} + \frac{L}{2} \left(\frac{4L^{2} \|\nabla f(x^{*})\|^{2}}{\mu^{2} \gamma^{2} \lambda^{2}} + \frac{1}{\lambda^{2} m} \frac{1}{j=1} \|g_{m}\|^{2} \right)$$

where g_j satisfy $\prod_{\mathcal{X}_i} (x^* + g_j) = x^*$ and $\frac{1}{m} \sum_{j=1}^m g_j = 1$ $^{7}f(x^{*})$. Hence, we obtain a good feasible olution by projecting onto \mathcal{X} only once.

$$(+\varepsilon)$$
, where f is convex and smooth. We obtain:
and $h(x_{\lambda,\varepsilon}) \leq \delta$ if $\lambda \sim \frac{1}{\sqrt{\delta}}$ and $\varepsilon \sim \sqrt{\delta}$.
 $(\Pi_{\mathcal{X}}(x_{\lambda,\varepsilon})) \leq \delta$ if $\lambda \sim \frac{1}{\delta}$ and $\varepsilon \sim \delta$.
need $\lambda \sim \frac{1}{\sqrt{\delta}}$ and $\varepsilon \sim \sqrt{\delta}$.

Algorithms

Algorithm 1: SGD applied to the reformula-
tion.for
$$k = 1, ...$$
 doSample i and j;
 $\omega_k = \frac{1}{2L+\theta k}$;
 $x^{k+1} = x^k - \omega_k (\nabla f_i(x^k) + \nabla h_j(x^k))$;endTheorem. The complexity of Algorithm 1 is
 $O((C(\Pi_{\mathcal{X}_j}) + C(\nabla f)\delta^{-1}).$ Algorithm 2: Nesterov's accelerated GD.input : $x^0, \theta_0 = 0$ for $k = 1, ...$ do $\theta_k = (1 + \sqrt{1 + 4\theta_{k-1}^2})/2$;
 $\eta_k = \frac{1 - \theta_{k-1}}{\theta k}$;
 $y^{k+1} = x^k - \frac{1}{L+\lambda} (\nabla f(x^k) + x^k - \frac{1}{m} \sum_j \Pi_{\mathcal{X}_j}(x^k))$;
 $x^{k+1} = x^k - \omega_k (\nabla f_i(x^k) + \nabla h_j(x^k))$;endTheorem. The complexity of Algorithm 2 is

Numerical Results

References

[1] Ion Necoara, Peter Richtarik, and Andrei Patrascu. Randomized projection methods for convex feasibility problems: conditioning and convergence rates.

[2] Lam Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč.

Sarah: A novel method for machine learning problems using stochastic recursive gradient.

[3] Yurii Nesterov.

Introductory lectures on convex optimization: A basic course.

Contact Information

• Web: konstmish.github.io

• Email: konstantin.mishchenko@kaust.edu.sa

