
Handling Optimization Problems with a Big Number of Constraints
Konstantin Mishchenko 1 Peter Richtárik 1, 2, 3

1 KAUST, 2University of Edinburgh, 3Moscow Institute of Physics and Technology

Objective

minimize
f (x) := 1

n

n∑
i=1
fi(x)

 (1)

subject to x ∈ X :=
m⋂
j=1
Xj ⊆ Rd (convex sets)

Issue: both n and m can be BIG!

Motivation

Most modern stochastic methods for solving (1),
such as SGD, SVRG and SAGA, have a version for
constrained optimization of the form

xk+1 = ΠX (xk − αkgk),
where gk is a random approximation of ∇f (xk),
αk > 0 is a stepsize and ΠX (x) is the projection
of x onto X . While the cost of computing gk can
be extremely small (e.g., independent of n), cost of
projecting onto X might be very large.

Our Reformulation

We turn the constrained problem (1) into
a special unconstrained problem:

min
x∈Rd

f (x) + λh(x), (2)

where λ > 0 and h(x) := 1
2m

m∑
j=1
‖x− ΠXj(x)‖2.

Assumption on the Sets X1, . . . ,Xm

Sets {Xj}mj=1 satisfy linear regularity property
with some constant γ > 0, i.e., for all x ∈ Rd

1
m

∑
j
‖x− ΠXjx‖2 > γ‖x− ΠX (x)‖2. (3)

Sufficient condition: ⋂j riXj is nonempty

Choice of λ

Let us denote
x∗λ := argmin

x∈Rd

f (x) + λh(x).

Lemma. If we increase λ:
•h∗λ := h(x∗λ)↘ 0,
• f ∗λ := f (x∗λ)↗ f ∗ := minx∈X f (x),
•Lλ→∞, where Lλ is the problem smoothness.
Moreover, for smooth f it holds that

G

L2 + λ2 6 h∗λ 6
f ∗ − f ∗0

λ
,

f ∗λ 6 f ∗ − λG

L2 + λ2.

where G := infx∈X ‖∇f (x)‖2/4.

Feasible Solution

If we combine linear regularity to smoothness and
convexity assumptions, we get
Theorem. If λ > L

γ , then

f (ΠX (x∗λ)) 6 f ∗ + 2
γλ

(f ∗ − f (x∗0)).

If, in addition, f is strongly convex,

f (ΠX (x∗λ)) 6 f ∗ + L

2

4L2‖∇f (x∗)‖2

µ2γ2λ2 + 1
λ2

1
m

m∑
j=1
‖gm‖2

 ,
where gj satisfy ΠXj(x∗ + gj) = x∗ and 1

m

∑m
j=1 gj =

∇f (x∗). Hence, we obtain a good feasible
solution by projecting onto X only once.

Important Result

Let xλ,ε be such that f (xλ,ε) +λh(xλ,ε) 6 f (x∗λ) +λh(x∗λ) + ε, where f is convex and smooth. We obtain:
Infeasible solution xλ,ε satisfying f (xλ,ε) 6 f ∗ and h(xλ,ε) 6 δ if λ ∼ 1√

δ
and ε ∼

√
δ .

Feasible solution ΠX (xλ,ε) satisfying f (ΠX (xλ,ε)) 6 δ if λ ∼ 1
δ and ε ∼ δ.

If f is strongly convex, then we only need λ ∼ 1√
δ
and ε ∼

√
δ.

Summary of Solution
Properties

Lower
bound Quantity Upper

bound
Ω
(

λ
L2+λ2

)∗
f ∗ − (f ∗λ + λh∗λ) O

(1
λ

)∗
Ω
(

λ
L2+λ2

)∗
f ∗ − f ∗λ O

(1
λ

)†
Ω
( 1
L2+λ2

)∗
h∗λ

O
(1
λ

)
O
( 1
λ2

)†
Ω
( 1
L2+λ2

)∗ ‖x∗λ − x∗‖2 O(1
λ)‡

O( 1
λ2)∗,‡

Ω
( 1
L2+λ2

)∗ ‖x∗λ − ΠX (x∗λ)‖2 O
( 1
λ2

)†
0 f (ΠX (x∗λ))− f ∗

O
(1
λ

)∗,§
O( 1

λ2)∗,‡

0 f (ΠX (xλ,ε)− f ∗ O
(1
λ + ε

)∗,§
O( 1

λ2 +ε)∗,§,‡
Table 1:Lower and upper bounds for different measures
of solution’s quality. Superscripts mean assumptions
used to prove the bound: * - smoothnes, † - convex-
ity, ‡ - strong convexity, § - big λ

L.

Algorithms

Algorithm 1: SGD applied to the reformula-
tion.
for k = 1, . . . do
Sample i and j;
ωk = 1

2L+θk;
xk+1 = xk − ωk(∇fi(xk) +∇hj(xk));
end
Theorem. The complexity of Algorithm 1 is
O
(
(C(ΠXj) + C(∇f )δ−1).

Algorithm 2: Nesterov’s accelerated GD.
input : x0, θ0 = 0
for k = 1, . . . do
θk = (1 +

√
1 + 4θ2

k−1)/2 ;
ηk = 1−θk−1

θk ;
yk+1 = xk− 1

L+λ(∇f (xk) +xk− 1
m

∑
j ΠXj(xk));

xk+1 = xk − ωk(∇fi(xk) +∇hj(xk));
end
Theorem. The complexity of Algorithm 2 is
O
(
(mC(ΠXj) + nC(∇f )δ−1).

Numerical Results

Figure 1:Horizontal axis: λ
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